scholarly journals Pore-scale view of microbial turnover: Combining 14 C imaging, μCT and zymography after adding soluble carbon to soil pores of specific sizes

Author(s):  
Alexandra Kravchenko ◽  
Andrey Guber ◽  
Anna Gunina ◽  
Michaela Dippold ◽  
Yakov Kuzyakov
2011 ◽  
Vol 15 (5) ◽  
pp. 1601-1614 ◽  
Author(s):  
G. H. de Rooij

Abstract. The movement of subsurface water is mostly studied at the pore scale and the Darcian scale, but the field and regional scales are of much larger societal interest. Volume-averaging has provided equations at these larger scales, but the required restrictions rendered them of little practical interest. Others hypothesized a direct connection at hydrostatic equilibrium between the average matric potential of a subsurface body of water and the average pressure drop over the menisci in the soil pores. The link between the volume-averaged potential energy of subsurface water bodies and large-scale fluxes remains largely unexplored. This paper treats the effect of menisci on the potential energy of the water behind them in some detail, and discusses some field-scale effects of pore-scale processes. Then, various published expressions for volume-averaged subsurface water potentials are compared. The intrinsic phase average is deemed the best choice. The hypothesized relationship between average matric potential and average meniscus curvature is found to be valid for unit gradient flow instead of hydrostatic equilibrium. Still, this restriction makes the relationship hold only for a specific depth range in the unsaturated zone under specific conditions, and certainly not for entire fields or catchments. In the groundwater, volume-averaged potential energy is of more use: for linearized, steady flows with flow lines that are parallel, radially diverging, and radially converging, proofs are derived for proportionality between averaged hydraulic potentials and fluxes towards open water at a fixed potential. For parallel flow, a simplified but relevant transient flow case also exhibits this proportionality.


Author(s):  
Paul SAPIN ◽  
Paul Duru ◽  
Florian Fichot ◽  
Marc Prat ◽  
Michel Quintard

2017 ◽  
Author(s):  
Pu He ◽  
Li Chen ◽  
Yu-Tong Mu ◽  
Wen-Quan Tao

2016 ◽  
Author(s):  
Heewon Jung ◽  
◽  
Alexis K. Navarre-Sitchler ◽  
Nathan Worts ◽  
Erica Block ◽  
...  

2012 ◽  
Vol 694 ◽  
pp. 399-407 ◽  
Author(s):  
Yulii D. Shikhmurzaev ◽  
James E. Sprittles

AbstractA new approach to the modelling of wetting fronts in porous media on the Darcy scale is developed, based on considering the types (modes) of motion the menisci go through on the pore scale. This approach is illustrated using a simple model case of imbibition of a viscous incompressible liquid into an isotropic porous matrix with two modes of motion for the menisci, the wetting mode and the threshold mode. The latter makes it necessary to introduce an essentially new technique of conjugate problems that allows one to link threshold phenomena on the pore scale with the motion on the Darcy scale. The developed approach (a) makes room for incorporating the actual physics of wetting on the pore scale, (b) brings in the physics associated with pore-scale thresholds, which determine when sections of the wetting front will be brought to a halt (pinned), and, importantly, (c) provides a regular framework for constructing models of increasing complexity.


Sign in / Sign up

Export Citation Format

Share Document