scholarly journals Rainfall variability and fine-scale life history tradeoffs help drive niche partitioning in a desert annual plant community

2017 ◽  
Vol 20 (10) ◽  
pp. 1231-1241 ◽  
Author(s):  
Robert K. Shriver
2020 ◽  
Author(s):  
John M. Grady ◽  
Quentin D. Read ◽  
Sydne Record ◽  
Nadja Rüger ◽  
Phoebe L. Zarnetske ◽  
...  

AbstractThe competition for light has long been regarded as a key axis of niche partitioning that promotes forest diversity, but available evidence is contradictory. Despite strong tradeoffs between growth and survival with light, field tests suggest neutral forces govern tree composition across forest gaps and resource use across size classes. Here we integrate scaling and niche theory, and use data from >114,000 woody plants in a tropical, old growth forest to test and predict patterns of niche partitioning with size and light. Consistent with predictions, the relative abundance, production, light capture, and richness of species in life histories with fast growth follow a power law relationship, increasing 1–2 orders of magnitude along a solar and size gradient. Competitive neutrality between size classes emerges above the sapling layer, where increasing access to light is counterbalanced by stronger self-shading. Convergent power law patterns of resource partitioning across taxa and spatial scale suggest general life history tradeoffs drive the organization of diverse communities.


2001 ◽  
Vol 71 (3) ◽  
pp. 423-446 ◽  
Author(s):  
Deborah E. Goldberg ◽  
Roy Turkington ◽  
Linda Olsvig-Whittaker ◽  
Andrew R. Dyer

2020 ◽  
Author(s):  
Gregory F Albery ◽  
Alison Morris ◽  
Sean Morris ◽  
Fiona Kenyon ◽  
Daniel H Nussey ◽  
...  

2018 ◽  
Vol 49 (2) ◽  
pp. jav-01531 ◽  
Author(s):  
Emily L. Weiser ◽  
Stephen C. Brown ◽  
Richard B. Lanctot ◽  
H. River Gates ◽  
Kenneth F. Abraham ◽  
...  

2021 ◽  
Author(s):  
Kathryn E. Barry ◽  
Stefan A. Schnitzer

AbstractOne of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD must occurs across life history strategies and not be restricted to a single life history strategy. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether the different woody plant growth forms (shrubs, understory trees, mid-story trees, canopy trees, and lianas) at different ontogenetic stages (seedling, sapling, and adult) were overdispersed – a spatial pattern indicative of CNDD – using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. However, this pattern was driven by adult canopy trees. By contrast, understory plants, which can constitute up to 80% of temperate forest plant diversity, were not overdispersed as adults. The lack of overdispersal suggests that CNDD is unlikely to be a major mechanism maintaining understory plant diversity. The focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.


Sign in / Sign up

Export Citation Format

Share Document