Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds

2018 ◽  
Vol 49 (2) ◽  
pp. jav-01531 ◽  
Author(s):  
Emily L. Weiser ◽  
Stephen C. Brown ◽  
Richard B. Lanctot ◽  
H. River Gates ◽  
Kenneth F. Abraham ◽  
...  
2020 ◽  
Author(s):  
Gregory F Albery ◽  
Alison Morris ◽  
Sean Morris ◽  
Fiona Kenyon ◽  
Daniel H Nussey ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
David J. Páez ◽  
Arietta E. Fleming-Davies

The use of viral pathogens to control the population size of pest insects has produced both successful and unsuccessful outcomes. Here, we investigate whether those biocontrol successes and failures can be explained by key ecological and evolutionary processes between hosts and pathogens. Specifically, we examine how heterogeneity in pathogen transmission, ecological and evolutionary tradeoffs, and pathogen diversity affect insect population density and thus successful control. We first review the existing literature and then use numerical simulations of mathematical models to further explore these processes. Our results show that the control of insect densities using viruses depends strongly on the heterogeneity of virus transmission among insects. Overall, increased heterogeneity of transmission reduces the effect of viruses on insect densities and increases the long-term stability of insect populations. Lower equilibrium insect densities occur when transmission is heritable and when there is a tradeoff between mean transmission and insect fecundity compared to when the heterogeneity of transmission arises from non-genetic sources. Thus, the heterogeneity of transmission is a key parameter that regulates the long-term population dynamics of insects and their pathogens. We also show that both heterogeneity of transmission and life-history tradeoffs modulate characteristics of population dynamics such as the frequency and intensity of “boom–bust" population cycles. Furthermore, we show that because of life-history tradeoffs affecting the transmission rate, the use of multiple pathogen strains is more effective than the use of a single strain to control insect densities only when the pathogen strains differ considerably in their transmission characteristics. By quantifying the effects of ecology and evolution on population densities, we are able to offer recommendations to assess the long-term effects of classical biocontrol.


Oecologia ◽  
2020 ◽  
Vol 192 (4) ◽  
pp. 893-907
Author(s):  
Eric L. Kruger ◽  
Ken Keefover-Ring ◽  
Liza M. Holeski ◽  
Richard L. Lindroth

Herpetozoa ◽  
2019 ◽  
Vol 32 ◽  
pp. 211-219
Author(s):  
Gabriel Suárez-Varón ◽  
Orlando Suárez-Rodríguez ◽  
Gisela Granados-González ◽  
Maricela Villagrán-Santa Cruz ◽  
Kevin M. Gribbins ◽  
...  

Clutch size (CS) and relative clutch mass (RCM) are considered important features in life history descriptions of species within Squamata. Variations in these two characteristics are caused by both biotic and abiotic factors. The present study provides the first account related to CS and RCM ofBasiliscus vittatusin Mexico within a population that inhabits an open riverbed juxtapositioned to tropical rainforest habitat in Catemaco, Veracruz, Mexico (170 m a.s.l.). Twenty-nine gravid females were collected and kept in captivity under favorable conditions that promote oviposition. The CS within this population was 6.2 ± 0.2 and was correlated positively with snout vent-length (SVL); while the RCM was 0.17 ± 0.006 and was correlated positively with both CS and width of egg. Factors, such as female morphology and environmental conditions, should influence these reproductive traits inB. vittatus. The data collected in this study could provide a framework for comparisons of the life history traits across populations ofB. vittatusin Mexico and within other species of the family Corytophanidae and provide a model for testing how abiotic and biotic factors may influence the CS and RCM in basilisk lizards throughout their range.


Sign in / Sign up

Export Citation Format

Share Document