scholarly journals Systematic variation in the temperature dependence of bacterial carbon use efficiency

2021 ◽  
Author(s):  
Thomas P. Smith ◽  
Tom Clegg ◽  
Thomas Bell ◽  
Samrāt Pawar
2020 ◽  
Author(s):  
Thomas P. Smith ◽  
Tom Clegg ◽  
Thomas Bell ◽  
Samrāt Pawar

Understanding the temperature dependence of carbon use efficiency (CUE) is critical for understanding microbial physiology, population dynamics, and community-level responses to changing environmental temperatures 1,2. Currently, microbial CUE is widely assumed to decrease with temperature 3,4. However, this assumption is based largely on community-level data, which are influenced by many confounding factors 5, with little empirical evidence at the level of individual strains. Here, we experimentally characterise the CUE thermal response for a diverse set of environmental bacterial isolates. We find that contrary to current thinking, bacterial CUE typically responds either positively to temperature, or has no discernible temperature response, within biologically meaningful temperature ranges. Using a global data-synthesis, we show that our empirical results are generalisable across a much wider diversity of bacteria than have previously been tested. This systematic variation in the thermal responses of bacterial CUE stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide fundamental new insights into microbial physiology, and a basis for more accurately modelling the effects of shorter-term thermal fluctuations as well as longer-term climatic warming on microbial communities.


1994 ◽  
Vol 128 (1) ◽  
pp. 115-122 ◽  
Author(s):  
P. B. TINKER ◽  
D. M. DURALL ◽  
M. D. JONES

2021 ◽  
Author(s):  
Philipp Gündler ◽  
Alberto Canarini ◽  
Sara Marañón Jiménez ◽  
Gunnhildur Gunnarsdóttir ◽  
Páll Sigurðsson ◽  
...  

<p>Seasonality of soil microorganisms plays a critical role in terrestrial carbon (C) and nitrogen (N) cycling. The asynchrony of immobilization by microbes and uptake by plants may be important for N retention during winter, when plants are inactive. Meanwhile, the known warming effects on soil microbes (decreasing biomass and increasing growth rates) may affect microbial seasonal dynamics and nutrient retention during winter.</p><p>We sampled soils from a geothermal warming site in Iceland (www.forhot.is) which includes three in situ warming levels (ambient, +3 °C, +6 °C). We harvested soil samples at 9 time points over one year and measured the seasonal variation in microbial biomass carbon (Cmic) and nitrogen (Nmic) and microbial physiology (growth and carbon use efficiency) by an <sup>18</sup>O-labelling technique.</p><p>We observed that Cmic and Nmic peaked in winter, followed by a decline in spring and summer. In contrast growth and respiration rates were higher in summer than winter. The observed biomass peak at lower growth rates, suggests that microbial death rates must have declined even more than growth rates. Soil warming increased biomass-specific microbial activity (i.e., growth, respiration, and turnover rates per unit of microbial biomass), prolonging the period of higher microbial activity found in summer into autumn and winter. Microbial carbon use efficiency was unaltered by soil warming. Throughout the seasons, warming reduced Cmic and Nmic, albeit with a stronger effect in winter than summer and restrained winter biomass accumulation by up to 78% compared to ambient conditions. We estimated a reduced microbial winter N storage capacity by 45.5 and 94.6 kg ha<sup>-1</sup> at +3 °C and +6 °C warming respectively compared to ambient conditions. This reduction represents 1.57% and 3.26% of total soil N stocks, that could potentially be lost per year from these soils.</p><p>Our results clearly demonstrate that soil warming strongly decreases microbial C and N immobilization when plants are inactive, potentially leading to higher losses of C and N from warmed soils over winter. These results have important implications as increased N losses may restrict increased plant growth in a future climate.</p>


2021 ◽  
pp. 103709
Author(s):  
Chengcheng Gang ◽  
Zhuonan Wang ◽  
Yongfa You ◽  
Yue Liu ◽  
Rongting Xu ◽  
...  

2005 ◽  
Vol 56 (416) ◽  
pp. 1499-1515 ◽  
Author(s):  
Stephen M. Sieger ◽  
Brian K. Kristensen ◽  
Christine A. Robson ◽  
Sasan Amirsadeghi ◽  
Edward W. Y. Eng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document