Common set of weights in data envelopment analysis under prospect theory

2020 ◽  
Vol 38 (1) ◽  
Author(s):  
Yu Yu ◽  
Weiwei Zhu ◽  
Qinfen Shi ◽  
Shangwen Zhuang
2014 ◽  
Vol 25 (07) ◽  
pp. 1450025 ◽  
Author(s):  
Yu Peng ◽  
Xu-Wen Wang ◽  
Qian Lu ◽  
Qing-Ke Zeng ◽  
Bing-Hong Wang

In the light of the prospect theory (PT), we study the prisoner's dilemma game (PDG) on square lattice by integrating the deterministic and Data envelopment analysis (DEA) efficient rule into adaptive rules: the individual will change evolutionary rule and migrate if its payoff is lower than their aspiration levels. Whether the individual choose to change the evolutionary rule and migrate is determined by the relation between its payoff and aspiration level. The results show that the cooperation frequency can hold unchange with the increasing of temptation to defect. The individual chooses to adopt DEA efficient rule and to migrate that can induce the emergence of cooperation as the payoff is lower than its aspiration.


2018 ◽  
Vol 35 (06) ◽  
pp. 1850039 ◽  
Author(s):  
Lei Chen ◽  
Fei-Mei Wu ◽  
Feng Feng ◽  
Fujun Lai ◽  
Ying-Ming Wang

Major drawbacks of the traditional data envelopment analysis (DEA) method include selecting optimal weights in a flexible manner, lacking adequate discrimination power for efficient decision-making units, and considering only desirable outputs. By introducing the concept of global efficiency optimization, this study proposed a double frontiers DEA approach with undesirable outputs to generate a common set of weights for evaluating all decision-making units from both the optimistic and pessimistic perspectives. For a unique optimal solution, compromise models for individual efficiency optimization were developed as a secondary goal. Finally, as an illustration, the models were applied to evaluate the energy efficiency of the Chinese regional economy. The results showed that the proposed approach could improve discrimination power and obtain a fair result in a case where both desirable and undesirable outputs exist.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Marzieh Ghasemi ◽  
Mohammad Reza Mozaffari ◽  
Farhad Hosseinzadeh Lotfi ◽  
Mohsen Rostamy malkhalifeh ◽  
Mohammad Hasan Behzadi

One of the mathematical programming techniques is data envelopment analysis (DEA), which is used for evaluating the efficiency of a set of similar decision-making units (DMUs). Fixed resource allocation and target setting with the help of DEA is a subject that has gained much attention from researchers. A new model was proposed by determining a common set of weights (CSW). All DMUs were involved with the aim of achieving higher efficiency in every DMU after the procedure. The minimum resources and targets allocated to each DMU were commensurate to the efficiency of that DMU and the share of DMU in the input resources and the output productions. To examine the proposed method, other methods in the DEA literature were examined as well, and then, the efficiency of the method was demonstrated through a numerical example.


2021 ◽  
Vol 40 (1) ◽  
pp. 813-832
Author(s):  
Sajad Kazemi ◽  
Reza Kiani Mavi ◽  
Ali Emrouznejad ◽  
Neda Kiani Mavi

Data Envelopment Analysis (DEA) is the most popular mathematical approach to assess efficiency of decision-making units (DMUs). In complex organizations, DMUs face a heterogeneous condition regarding environmental factors which affect their efficiencies. When there are a large number of objects, non-homogeneity of DMUs significantly influences their efficiency scores that leads to unfair ranking of DMUs. The aim of this study is to deal with non-homogeneous DMUs by implementing a clustering technique for further efficiency analysis. This paper proposes a common set of weights (CSW) model with ideal point method to develop an identical weight vector for all DMUs. This study proposes a framework to measuring efficiency of complex organizations, such as banks, that have several operational styles or various objectives. The proposed framework helps managers and decision makers (1) to identify environmental components influencing the efficiency of DMUs, (2) to use a fuzzy equivalence relation approach proposed here to cluster the DMUs to homogenized groups, (3) to produce a common set of weights (CSWs) for all DMUs with the model developed here that considers fuzzy data within each cluster, and finally (4) to calculate the efficiency score and overall ranking of DMUs within each cluster.


Sign in / Sign up

Export Citation Format

Share Document