Transforming growth factor‐β1 inhibits interleukin‐1β‐induced expression of inflammatory genes and Cathepsin S activity in human vascular smooth muscle cells

Author(s):  
Nedra Dhaouadi ◽  
Ali Nehme ◽  
Wissam H. Faour ◽  
Patrick Feugier ◽  
Catherine Cerutti ◽  
...  
2010 ◽  
Vol 298 (1) ◽  
pp. C191-C201 ◽  
Author(s):  
George M. Risinger ◽  
Dawn L. Updike ◽  
Elizabeth C. Bullen ◽  
James J. Tomasek ◽  
Eric W. Howard

During platelet-derived growth factor (PDGF)-BB-mediated recruitment to neovascular sprouts, vascular smooth muscle cells (VSMCs) dedifferentiate from a contractile to a migratory phenotype. This involves the downregulation of contractile markers such as smooth muscle (SM) α-actin and the upregulation of promigration genes such as matrix metalloproteinase (MMP)-2. The regulation of MMP-2 in response to PDGF-BB is complex and involves both stimulatory and inhibitory signaling pathways, resulting in a significant delay in upregulation. Here, we provide evidence that the delay in MMP-2 upregulation may be due to the autocrine expression and activation of transforming growth factor (TGF)-β, which is known to promote the contractile phenotype in VSMCs. Whereas PDGF-BB could induce the loss of stress fibers and focal adhesions, TGF-β was able to block or reverse this transition to a noncontractile state. TGF-β did not, however, suppress early signaling events stimulated by PDGF-BB. Over time, though PDGF-BB induced increased TGF-β1 levels, it suppressed TGF-β2 and TGF-β3 expression, leading to a net decrease in the total TGF-β pool, resulting in the upregulation of MMP-2. Together, these findings indicate that MMP-2 expression is suppressed by a threshold level of active TGF-β, which in turn promotes a contractile VSMC phenotype that prevents the upregulation of MMP-2.


1997 ◽  
Vol 272 (6) ◽  
pp. C1836-C1843 ◽  
Author(s):  
P. L. Tharaux ◽  
A. Stefanski ◽  
S. Ledoux ◽  
J. M. Soleilhac ◽  
R. Ardaillou ◽  
...  

We recently reported that neutral endopeptidase (NEP) expression on renal vascular smooth muscle cells (VSMC) was downregulated in the presence of serum. Here we examine the role of epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta) in this downregulation and the consequences of the changes in NEP activity on their mitogenic effects. EGF inhibited NEP activity, whereas TGF-beta was stimulatory. Expression of the enzyme was studied by measuring the binding of [125I]RB-104, a specific NEP inhibitor, and the fluorescence intensity of NEP-labeled cells. Both parameters were decreased by EGF and were increased by TGF-beta. NEP mRNA expression in EGF-treated cells was reduced after 48 h. In contrast, it was increased in TGF-beta-treated cells. Interestingly, NEP inhibition influenced the mitogenic effect of EGF. Indeed, thiorphan, an NEP inhibitor, and an anti-NEP antibody decreased EGF-dependent [3H]thymidine incorporation and cell proliferation by approximately 50%. TGF-beta had no effect on VSMC growth. These results indicate that EGF but not TGF-beta participates in the downregulatory potency of serum on NEP expression in VSMC. They also demonstrate that the full effect of EGF on VSMC proliferation depends on intact NEP activity.


1997 ◽  
Vol 273 (2) ◽  
pp. H628-H633 ◽  
Author(s):  
J. W. Gu ◽  
T. H. Adair

We determined whether hypoxia-induced expression of vascular endothelial growth factor (VEGF) can be reversed by a normoxic environment. Dog myocardial vascular smooth muscle cells (MVSMCs) were exposed to hypoxia (1% O2) for 24 h and then returned to normoxia (20% O2). VEGF protein levels increased by more than fivefold after 24 h of hypoxia and returned to baseline within 24 h of the return of the cells to normoxia. Northern blot analysis showed that hypoxia caused a 5.5-fold increase in VEGF mRNA, and, again, the expression was reversed after reinstitution of normoxia. Additional measurements showed that basic fibroblast growth factor and platelet-derived growth factor protein levels were not induced by hypoxia and that hypoxia caused a fourfold decrease in transforming growth factor-beta 1 protein levels. Hypoxia conditioned media from MVSMCs caused human umbilical vein endothelial cells to increase [3H]thymidine incorporation by twofold, an effect that was blocked in a dose-dependent manner by anti-human VEGF antibody. The hypoxia conditioned media had no effect on MVSMC proliferation. These findings suggest that VEGF expression can be bidirectionally controlled by tissue oxygenation, and thus support the hypothesis that VEGF is a physiological regulator of angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document