scholarly journals A critical role of the small GTPase Rac1 in Akt2-mediated GLUT4 translocation in mouse skeletal muscle

FEBS Journal ◽  
2014 ◽  
Vol 281 (5) ◽  
pp. 1493-1504 ◽  
Author(s):  
Nobuyuki Takenaka ◽  
Rumi Izawa ◽  
Junyuan Wu ◽  
Kaho Kitagawa ◽  
Yuma Nihata ◽  
...  
2010 ◽  
Vol 24 (7) ◽  
pp. 2254-2261 ◽  
Author(s):  
Shuji Ueda ◽  
Sohei Kitazawa ◽  
Kota Ishida ◽  
Yuki Nishikawa ◽  
Megumi Matsui ◽  
...  

2019 ◽  
Vol 317 (6) ◽  
pp. E973-E983 ◽  
Author(s):  
Annie Hasib ◽  
Chandani K. Hennayake ◽  
Deanna P. Bracy ◽  
Aimée R. Bugler-Lamb ◽  
Louise Lantier ◽  
...  

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient ( cd44−/−) mice and wild-type littermates ( cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44−/− mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44−/− mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44−/− mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44−/− compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44−/− mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44−/− mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


2008 ◽  
Vol 19 (7) ◽  
pp. 2718-2728 ◽  
Author(s):  
Irfan J. Lodhi ◽  
Dave Bridges ◽  
Shian-Huey Chiang ◽  
Yanling Zhang ◽  
Alan Cheng ◽  
...  

Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain–containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.


2001 ◽  
Vol 356 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Mireille CORMONT ◽  
Nadine GAUTIER ◽  
Karine ILC ◽  
Yannick Le MARCHAND-BRUSTEL

The small GTPase Rab4 has been shown to participate in the subcellular distribution of GLUT4 under both basal and insulin-stimulated conditions in adipocytes. In the present work, we have characterized the effect of Rab4 ΔCT, a prenylation-deficient and thus cytosolic form of Rab4, in this process. We show that the expression of Rab4 ΔCT in freshly isolated adipocytes inhibits insulin-induced GLUT4 translocation, but only when this protein is in its GTP-bound active form. Further, it not only blocks the effect of insulin, but also that of a hyperosmotic shock, but does not interfere with the effect of zinc ions on GLUT4 translocation. Rab4 ΔCT was then shown to prevent GLUT4 translocation induced by the expression of an active form of phosphatidylinositol 3-kinase or of protein kinase B, without altering the activities of the enzymes. Our results are consistent with a role of Rab4 ΔCT acting as a dominant negative protein towards Rab4, possibly by binding to Rab4 effectors.


2016 ◽  
Vol 6 ◽  
Author(s):  
Erick O. Hernández-Ochoa ◽  
Stephen J. P. Pratt ◽  
Richard M. Lovering ◽  
Martin F. Schneider

2006 ◽  
Vol 575 (1) ◽  
pp. 251-262 ◽  
Author(s):  
Marie E. Sandström ◽  
Shi-Jin Zhang ◽  
Joseph Bruton ◽  
José P. Silva ◽  
Michael B. Reid ◽  
...  

Author(s):  
MarieE. Sandstr�m ◽  
Fabio Abbate ◽  
DanielC. Andersson ◽  
Shi-Jin Zhang ◽  
H�kan Westerblad ◽  
...  

2017 ◽  
Vol 43 (5) ◽  
pp. 1813-1828 ◽  
Author(s):  
Qiu Zeng ◽  
Qining Fu ◽  
Xuehu Wang ◽  
Yu Zhao ◽  
Hong Liu ◽  
...  

Background/Aims: Skeletal muscle ischemia/reperfusion (I/R) injury is a common and severe disease. Sonic hedgehog (Shh) plays a critical role in post-natal skeletal muscle regeneration. In the present study, the role of Shh in skeletal muscle I/R injury and the mechanisms involved were investigated. Methods: The expression of Shh, AKT/mTOR/p70S6K and apoptosis pathway components were evaluated following tourniquet-induced skeletal muscle I/R injury. Then, mice were subjected to systemic administration of cyclopamine or one-shot treatment of a plasmid encoding the human Shh gene (phShh) to examine the effects of Shh on I/R injury. Moreover, mice were subjected to systemic administration of NVP-BEZ235 to investigate the role of the AKT/mTOR/p70S6K pathway in Shh-triggered skeletal muscle protection. Results: We found that the levels of Shh, AKT/mTOR/p70S6K pathway components and Cleaved Caspase 3 and the Bax/Bcl2 ratio initially increased and then decreased at different time points post-I/R injury. Moreover, Shh protected skeletal muscle against I/R injury by alleviating muscle destruction, reducing interstitial fibrosis and inhibiting apoptosis, and these protective effects were abrogated when the AKT/mTOR/p70S6K pathway was inhibited. Conclusion: Collectively, these data suggest that Shh signaling exerts a protective role through the AKT/mTOR/p70S6K signaling pathway during skeletal muscle I/R injury. Thus, Shh signaling may be a therapeutic target for protecting skeletal muscle from I/R injury.


2015 ◽  
Vol 10 (S 01) ◽  
Author(s):  
C de Wendt ◽  
A Chadt ◽  
J Loffing ◽  
D Loffing-Cueni ◽  
HG Joost ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document