Large amounts of labile organic carbon in permafrost soils of northern Alaska

2015 ◽  
Vol 21 (7) ◽  
pp. 2804-2817 ◽  
Author(s):  
Carsten W. Mueller ◽  
Janet Rethemeyer ◽  
Jenny Kao-Kniffin ◽  
Sebastian Löppmann ◽  
Kenneth M. Hinkel ◽  
...  
2020 ◽  
Vol 14 (12) ◽  
pp. 4341-4364
Author(s):  
Rupesh Subedi ◽  
Steven V. Kokelj ◽  
Stephan Gruber

Abstract. The central Slave Geological Province is situated 450–650 km from the presumed spreading centre of the Keewatin Dome of the Laurentide Ice Sheet, and it differs from the western Canadian Arctic, where recent thaw-induced landscape changes in Laurentide ice-marginal environments are already abundant. Although much of the terrain in the central Slave Geological Province is mapped as predominantly bedrock and ice-poor, glacial deposits of varying thickness occupy significant portions of the landscape in some areas, creating a mosaic of permafrost conditions. Limited evidence of ice-rich ground, a key determinant of thaw-induced landscape change, exists. Carbon and soluble cation contents in permafrost are largely unknown in the area. Twenty-four boreholes with depths up to 10 m were drilled in tundra north of Lac de Gras to address these regional gaps in knowledge and to better inform projections and generalizations at a coarser scale. Excess-ice contents of 20 %–60 %, likely remnant Laurentide basal ice, are found in upland till, suggesting that thaw subsidence of metres to more than 10 m is possible if permafrost were to thaw completely. Beneath organic terrain and in fluvially reworked sediment, aggradational ice is found. The variability in abundance of ground ice poses long-term challenges for engineering, and it makes the area susceptible to thaw-induced landscape change and mobilization of sediment, solutes and carbon several metres deep. The nature and spatial patterns of landscape changes, however, are expected to differ from ice-marginal landscapes of western Arctic Canada, for example, based on greater spatial and stratigraphic heterogeneity. Mean organic-carbon densities in the top 3 m of soil profiles near Lac de Gras are about half of those reported in circumpolar statistics; deeper deposits have densities ranging from 1.3–10.1 kg C m−3, representing a significant additional carbon pool. The concentration of total soluble cations in mineral soils is lower than at previously studied locations in the western Canadian Arctic. This study can inform permafrost investigations in other parts of the Slave Geological Province, and its data can support scenario simulations of future trajectories of permafrost thaw. Preserved Laurentide basal ice can support new ways of studying processes and phenomena at the base of an ice sheet.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Atsushi Kubo ◽  
Jota Kanda

AbstractThe carbon budget of Tokyo Bay, a highly urbanized coastal basin, was estimated using a box model that incorporated inorganic and organic carbon data over an annual cycle (2011–2012). The surface water represented net autotrophic system in which the annual net community production (NCP) was 19 × 1010 gC year−1. The annual loading of dissolved inorganic carbon and total organic carbon (TOC) from freshwater inputs was 11.2 × 1010 and 4.9 × 1010 gC year−1, respectively. The annual TOC sedimentation rate was 3.1 × 1010 gC year−1, similar to the annual air–sea CO2 uptake (5.0 × 1010 gC year−1). Although the NCP and TOC loading from freshwater inputs were respectively 3.0 and 2.7 times lower than those in the 1970s, the TOC sedimentation rate was similar. Therefore, a relatively high carbon efflux from Tokyo Bay likely occurred in the 1970s, including CO2 efflux to the atmosphere and/or export of labile organic carbon to the open ocean. The changes in carbon flow between the 1970s and 2011–2012 resulted from improved water quality due to increased sewage treatment facilities and improved sewage treatment efficiency in the catchment, which decreased the amount of labile organic carbon flowing into the bay.


2019 ◽  
Author(s):  
John G. Watson ◽  
Junji Cao ◽  
L.W. Antony Chen ◽  
Qiyuan Wang ◽  
Jie Tian ◽  
...  

Abstract. Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, U.S.A.), subtropical (northern and southern Florida, U.S.A), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency [MCE] = 0.82 ± 0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 ± 38 g kg−1) and lowest (1073 ± 63 g kg−1) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are ~12 %‒15 % and ~0.3 %‒0.9  % of EFCO2, in the range of 157‒171 g kg−1 and 3‒10 g kg−1, respectively. EFs for nitrogen species are at the same magnitude of EFCH4, with an average of 5.6 ± 4.8 and 4.7 ± 3.1 g kg−1 for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9 ± 1.1 g kg−1 for EFNOx (nitrogen oxides); as well as 2.4 ± 1.4 and 2.0 ± 0.7 g kg−1 for EFNOy (reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of ~2 and ~7 days to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by >4-fold (14‒61 g kg−1) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC/EFPM2.5 ratios in the range of 52 %‒98 % for fresh emissions, and ~15 % degradation after aging. Reductions of EFOC (~7‒9 g kg−1) after aging are most apparent for boreal peats with the largest degradation in organic carbon that evolves at <140 °C, indicating the loss of high vapor pressure semi-volatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (~16 g kg−1), with ~35 %‒50 % degradation after aging. EFs for water-soluble OC (EFWSOC) accounts for ~20 %‒62 % of fresh EFOC. The majority (>95 %) of the total emitted carbon is in the gas phase with 54 %‒75 % CO2, followed by 8 %‒30 % CO. Nitrogen in the measured species explains 24 %‒52 % of the consumed fuel nitrogen with an average of 35 ± 11 %, consistent with past studies that report ~one- to two-thirds of the fuel nitrogen measured in biomass smoke. The majority (>99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % fuel N emitted as NH3 and 9.5 % of fuel N emitted as HCN. N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel N. EFs from this study can be used to refine current emissions inventories.


Sign in / Sign up

Export Citation Format

Share Document