scholarly journals Coastal urbanization alters carbon cycling in Tokyo Bay

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Atsushi Kubo ◽  
Jota Kanda

AbstractThe carbon budget of Tokyo Bay, a highly urbanized coastal basin, was estimated using a box model that incorporated inorganic and organic carbon data over an annual cycle (2011–2012). The surface water represented net autotrophic system in which the annual net community production (NCP) was 19 × 1010 gC year−1. The annual loading of dissolved inorganic carbon and total organic carbon (TOC) from freshwater inputs was 11.2 × 1010 and 4.9 × 1010 gC year−1, respectively. The annual TOC sedimentation rate was 3.1 × 1010 gC year−1, similar to the annual air–sea CO2 uptake (5.0 × 1010 gC year−1). Although the NCP and TOC loading from freshwater inputs were respectively 3.0 and 2.7 times lower than those in the 1970s, the TOC sedimentation rate was similar. Therefore, a relatively high carbon efflux from Tokyo Bay likely occurred in the 1970s, including CO2 efflux to the atmosphere and/or export of labile organic carbon to the open ocean. The changes in carbon flow between the 1970s and 2011–2012 resulted from improved water quality due to increased sewage treatment facilities and improved sewage treatment efficiency in the catchment, which decreased the amount of labile organic carbon flowing into the bay.

2007 ◽  
Vol 4 (1) ◽  
pp. 317-348 ◽  
Author(s):  
S. Bouillon ◽  
J. J. Middelburg ◽  
F. Dehairs ◽  
A. V. Borges ◽  
G. Abril ◽  
...  

Abstract. We conducted diurnal sampling in a tidal creek (Ras Dege, Tanzania) to document the variations in a suite of creek water column characteristics and to determine the relative influence of tidal and biological driving forces. Since the creek has no upstream freshwater inputs, highest salinity was observed at low tide, due to evaporation effects and porewater seepage. Total suspended matter (TSM) and particulate organic carbon (POC) showed distinct maxima at periods of highest water flow, indicating that erosion of surface sediments and/or resuspension of bottom sediments were an important source of particulate material. Dissolved organic carbon (DOC), in contrast, followed the tidal variations and was highest at low tide. Stable isotope data of POC and DOC exhibit large variations in both pools, and followed tidal variations. Although the variation of δ13CDOC (−23.8 to −13.8‰) was higher than that of δ13CPOC (−26.2 to −20.5‰) due to the different end-member pool sizes, the δ13C signatures of both pools differed only slightly at low tide, but up to 9‰ at high tide. Thus, at low tide both DOC and POC originated from mangrove production. At high tide, on the other hand, the DOC pool had signatures consistent with a high contribution of seagrass-derived material, whereas the POC pool was dominated by marine phytoplankton. Daily variations in CH4, and partial pressure of CO2 (pCO2) were similarly governed by tidal influence and were up to 7- and 10-fold higher at low tide, which stresses the importance of exchange of porewater and diffusive fluxes to the water column. Furthermore, this illustrates that constraining an ecosystem-level budget of these greenhouse gases in tidal systems requires a careful appraisal of tidal variations. When assuming that the high dissolved inorganic carbon (DIC) levels in the upper parts of the creek (i.e. at low tide) are due to inputs from mineralization, δ13C data on DIC indicate that the source of the mineralized organic matter has a signature of −22.4‰, which shows that imported POC and DOC from the marine environment contributes strongly to overall mineralization within the mangrove system. Our data show a striking example of how biogeochemical processes in the intertidal zone appear to be prominent drivers of element concentrations and isotope signatures in the water column, and how pathways of dissolved and particulate matter exchange are fundamentally different. The estimated export of DIC through porewater exchange appears considerably larger than for DOC, suggesting that if this mechanism is indeed a major driver of solute exchange, benthic mineralization and subsequent export as DIC could represent a very significant and previously unaccounted fate of mangrove-derived C. Budgeting efforts should therefore pay attention to understanding the mechanisms and quantification of different pathways of exchange within and between both zones.


2015 ◽  
Vol 12 (1) ◽  
pp. 269-279 ◽  
Author(s):  
A. Kubo ◽  
M. Yamamoto-Kawai ◽  
J. Kanda

Abstract. Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay. On average, recalcitrant DOC (RDOC), as a remnant of DOC after 150 days of bottle incubation, accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. Bioavailable DOC (BDOC) concentrations, defined as DOC minus RDOC, were lower than RDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than in autumn and winter because of freshwater input and biological production. The relative concentration of RDOC in the bay derived from phytoplankton, terrestrial, and open-oceanic waters was estimated to be 8–10, 21–32, and 59–69%, respectively, based on multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33 and 74% at freshwater sites and 39 and 76% in Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of STP effluent entering the system. Tokyo Bay exported mostly RDOC to the open ocean because of the remineralization of BDOC.


2014 ◽  
Vol 11 (7) ◽  
pp. 10203-10228 ◽  
Author(s):  
A. Kubo ◽  
M. Yamamoto-Kawai ◽  
J. Kanda

Abstract. Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay to evaluate the significance of DOC degradation for the carbon budget in coastal waters and carbon export to the open ocean. Recalcitrant DOC (RDOC) was differentiated from bioavailable DOC (BDOC) as a remnant of DOC after 150 days of bottle incubation. On average, RDOC accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. RDOC concentrations were higher than BDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than during autumn and winter. The relative abundance of RDOC in the bay derived from phytoplankton, terrestrial, and open oceanic waters was estimated to be 9%, 33%, and 58%, respectively, by multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33% and 74% at freshwater sites and 39% and 76% at Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of sewage treatment plant effluent entering the system. Tokyo Bay exported DOC, mostly RDOC, to the open ocean because of remineralization of BDOC.


2020 ◽  
Vol 36 (2) ◽  
pp. 86-98
Author(s):  
A.A. Sergeeva ◽  
G.V. Ovechkina ◽  
A.Yu. Maksimov

Bacterial strains capable of degradation of 0.8-15.8 g/1 pyridine hydrochloride have been isolated from activated sludge of municipal biological treatment plants in Perm (BOS) and local treatment facilities of the LUKOIL-Permnefteorgsintez enterprise (PNOS). The strains were identified as Achromobacter pulmonis and Burkholderia dolosa. The optimal pyridine concentration for the growth of the isolated strains was 4.0 g/1. The pyridine degradation during the A. pulmonis PNOS and B. dolosa BOS cultivation on a medium with ammonium chloride and glucose and without additional nitrogen or carbon sources was studied. It was shown that the strains are able to accumulate biomass in a medium with pyridine as the sole carbon and nitrogen source; the addition of glucose to the medium (1 g/L) accelerated the pyridine degradation by A. pulmonis PNOS, but inhibited the process carried out by B. dolosa BOS. B. dolosa BOS and A. pulmonis PNOS biofilms efficiently utilized pyridine during growth on basalt and carbon fibers; the highest rate of pyridine utilization (1.8 g /(L day)) was observed in A. pulmonis PNOS biofilms on basalt fibers. pyridine, biodegradation, activated sludge, biofilms, Achromobacter pulmonis, Burkholderia dolosa The authors grateful to Dr. I.I. Tchaikovsky, Head of the Laboratory of Geology of Mineral Deposits of the Mining Institute, a branch of the Perm Federal Research Center, for help with electron microscopy of the samples. This work was carried out as part of a state assignment on the topic « Study of the Functional and Species Diversity of Microorganisms Useful for Ecocenoses and Human Practical Activity», registration number R&D AAAA-A19-119112290008-4.


Geology ◽  
2020 ◽  
Author(s):  
C.R. Woltz ◽  
S.M. Porter ◽  
H. Agić ◽  
C.M. Dehler ◽  
C.K. Junium ◽  
...  

Much of our understanding of early eukaryote diversity and paleoecology comes from the record of organic-walled microfossils in shale, yet the conditions controlling their preservation are not well understood. It has been suggested that high concentrations of total organic carbon (TOC) inhibit the preservation of organic fossils in shale, and although this idea is supported anecdotally, it has never been tested. Here we compared the presence, preservational quality, and assemblage diversity of organic-walled microfossils to TOC concentrations of 346 shale samples that span the late Paleoproterozoic to middle Neoproterozoic in age. We found that fossil-bearing samples have significantly lower median TOC values (0.32 wt%, n = 189) than those containing no fossils (0.72 wt%, n = 157). Preservational quality, measured by the loss of surface pattern, density of pitting, and deterioration of wall margin, decreases as TOC increases. Species richness negatively correlates with TOC within the ca. 750 Ma Chuar Group (Arizona, USA), but no relationship is observed in other units. These results support the hypothesis that high TOC content either decreases the preservational quality or inhibits the preservation of organic-walled microfossils altogether. However, it is also possible that other causal factors, including sedimentation rate and microbial degradation, account for the correlation between fossil preservation and TOC. We expect that as TOC varies in space and time, so too does the probability of finding well-preserved fossils. A compilation of 13,940 TOC values spanning Earth history suggests significantly higher median TOC levels in Mesoproterozoic versus Neoproterozoic shale, potentially biasing the interpreted pattern of increased eukaryotic diversity in the Tonian.


2012 ◽  
Vol 424-425 ◽  
pp. 1334-1337
Author(s):  
Rong Jun Su

Through the extensive research and deep analysis of existing problems in cleaner production, four middle/high expense plans were set forth, demonstrated and implemented. These four implement plans included high efficient steam traps, energy saving system of steam boiler, improved sewage treatment facilities and vacuum raw material feeder. The total investment was 330 thousand Yuan RMB. The annual discharge of waste water was reduced by about 30 thousand tons and annual economic profit was 680 thousand Yuan RMB. Moreover, better environmental and social benefit was created. More importantly, a sustainable cleaner production mechanism was established for the factory.


Sign in / Sign up

Export Citation Format

Share Document