Changing fitness of a necrotrophic plant pathogen under increasing temperature

2015 ◽  
Vol 21 (8) ◽  
pp. 3126-3137 ◽  
Author(s):  
Rosalie Sabburg ◽  
Friday Obanor ◽  
Elizabeth Aitken ◽  
Sukumar Chakraborty

2021 ◽  
Author(s):  
Yahuza Lurwanu ◽  
Yan‐Ping Wang ◽  
E‐Jiao Wu ◽  
Dun‐Chun He ◽  
Abdul Waheed ◽  
...  






Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.



2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.



2020 ◽  
Author(s):  
MSM Wee ◽  
Ian Sims ◽  
KKT Goh ◽  
L Matia-Merino

© 2019 Elsevier Ltd A water-soluble polysaccharide (type II arabinogalactan-protein) extracted from the gum exudate of the native New Zealand puka tree (Meryta sinclairii), was characterised for its molecular, rheological and physicochemical properties. In 0.1 M NaCl, the weight average molecular weight (Mw) of puka gum is 5.9 × 106 Da with an RMS radius of 56 nm and z-average hydrodynamic radius of 79 nm. The intrinsic viscosity of the polysaccharide is 57 ml/g with a coil overlap concentration 15% w/w. Together, the shape factor, p, of 0.70 (exponent of RMS radius vs. hydrodynamic radius), Smidsrød-Haug's stiffness parameter B of 0.031 and Mark-Houwink exponent α of 0.375 indicate that the polysaccharide adopts a spherical conformation in solution, similar to gum arabic. The pKa is 1.8. The polysaccharide exhibits a Newtonian to shear-thinning behaviour from 0.2 to 25% w/w. Viscosity of the polysaccharide (1 s−1) decreases with decreasing concentration, increasing temperature, ionic strength, and at acidic pH.



Sign in / Sign up

Export Citation Format

Share Document