scholarly journals Announcing GCB reviews – The past, present and future of global change biology at your fingertips

2021 ◽  
Vol 27 (7) ◽  
pp. 1326-1327
Author(s):  
Danielle A. Way

2020 ◽  
Vol 26 (11) ◽  
pp. 6040-6061 ◽  
Author(s):  
Jianyang Xia ◽  
Jing Wang ◽  
Shuli Niu


Author(s):  
Domenico D'Alelio ◽  
Salvatore Rampone ◽  
Luigi Maria Cusano ◽  
Nadia Sanseverino ◽  
Luca Russo ◽  
...  


2018 ◽  
Vol 374 (1763) ◽  
pp. 20170405 ◽  
Author(s):  
Heather M. Kharouba ◽  
Jayme M. M. Lewthwaite ◽  
Rob Guralnick ◽  
Jeremy T. Kerr ◽  
Mark Vellend

Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species’ ecological and evolutionary responses to rapid, widespread global changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the anthropocene’.



2018 ◽  
Vol 374 (1763) ◽  
pp. 20170392 ◽  
Author(s):  
Carrie Andrew ◽  
Jeffrey Diez ◽  
Timothy Y. James ◽  
Håvard Kauserud

For several hundred years, millions of fungal sporocarps have been collected and deposited in worldwide collections (fungaria) to support fungal taxonomy. Owing to large-scale digitization programs, metadata associated with the records are now becoming publicly available, including information on taxonomy, sampling location, collection date and habitat/substrate information. This metadata, as well as data extracted from the physical fungarium specimens themselves, such as DNA sequences and biochemical characteristics, provide a rich source of information not only for taxonomy but also for other lines of biological inquiry. Here, we highlight and discuss how this information can be used to investigate emerging topics in fungal global change biology and beyond. Fungarium data are a prime source of knowledge on fungal distributions and richness patterns, and for assessing red-listed and invasive species. Information on collection dates has been used to investigate shifts in fungal distributions as well as phenology of sporocarp emergence in response to climate change. In addition to providing material for taxonomy and systematics, DNA sequences derived from the physical specimens provide information about fungal demography, dispersal patterns, and are emerging as a source of genomic data. As DNA analysis technologies develop further, the importance of fungarium specimens as easily accessible sources of information will likely continue to grow. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the Anthropocene’.



2018 ◽  
Vol 1 (1) ◽  
pp. 58
Author(s):  
Robert Alexander Pyron

We live in an unprecedented age for systematics and biodiversity studies. Ongoing global change is leading to a future with reduced species richness and ecosystem function (Pereira, Navarro, & Martins, 2012). Yet, we know more about biodiversity now than at any time in the past. For squamates in particular, we have range maps for all species (Roll et al., 2017), phylogenies containing estimates for all species (Tonini, Beard, Ferreira, Jetz, & Pyron, 2016), and myriad ecological and natural-history datasets for a large percentage of species (Meiri et al., 2013; Mesquita et al., 2016). For neotropical snakes, a recent synthesis of museum specimens and verified localities offers a fine-grained perspective on their ecogeographic distribution in Central and South America, and the Caribbean (Guedes et al., 2018).



2018 ◽  
Vol 24 (9) ◽  
pp. 3873-3874
Author(s):  
Christoph Müller ◽  
Gerald Moser




Sign in / Sign up

Export Citation Format

Share Document