Age-related changes in skeletal muscle mass among community-dwelling Japanese: A 12-year longitudinal study

2014 ◽  
Vol 14 ◽  
pp. 85-92 ◽  
Author(s):  
Hiroshi Shimokata ◽  
Fujiko Ando ◽  
Atsumu Yuki ◽  
Rei Otsuka
Author(s):  
Elisabetta Marini ◽  
Roberto Buffa ◽  
Luis Alberto Gobbo ◽  
Guillermo Salinas-Escudero ◽  
Silvia Stagi ◽  
...  

The aim of the study was to analyze sex and age-related body composition variations among older adults from the Brazilian, Italian, and Mexican population. A cross-sectional analysis was conducted in 1103 community-dwelling older adults (634 women and 469 men), aged 60 to 89 years, living in Brazil (n = 176), Italy (n = 554), and Mexico (n = 373). Anthropometric measurements were taken, BMI was calculated, and impedance measurements were obtained (resistance, R, reactance, Xc). Specific bioelectrical impedance vector analysis (specific BIVA) was applied, with the specific vector defined by impedance, or vector length (Z = (Rsp2 + Xcsp)0.5), and phase angle (PA = arctan Xc/R 180/π). Population, sex, and age differences in anthropometric and bioelectrical variables were evaluated by means of a two way ANOVA. The mean bioelectrical vectors were graphed by confidence ellipses and statistically compared by the Hotelling’s T2 test. The three population groups showed differences in body mass and composition (p < 0.001): the Brazilian sample was characterized by greater body dimensions, longer vectors (higher relative content of fat mass), and lower phase angles (lower skeletal muscle mass). Men were taller and heavier than women (p < 0.001) but had a similar BMI (p = 0.102). They also had higher phase angle (higher skeletal muscle mass) (p < 0.001) and lower vector length (lower %FM) (p < 0.001). In the three population groups, the oldest individuals showed lower anthropometric and phase angle values with respect to the youngest ones (p < 0.001), whereas the vector length did not change significantly with age (p = 0.665). Despite the differences between sexes and among populations, the trend of age-related variations was similar in the Brazilian, Italian, and Mexican older adults.


2021 ◽  
Vol 22 (6) ◽  
pp. 3032
Author(s):  
Anna Picca ◽  
Riccardo Calvani

Sarcopenia involves a progressive age‐related decline of skeletal muscle mass and strength/function [...]


2020 ◽  
Vol 67 (1.2) ◽  
pp. 151-157 ◽  
Author(s):  
Michiko Sato ◽  
Teruhiro Morishita ◽  
Takafumi Katayama ◽  
Shigeko Satomura ◽  
Hiroko Okuno ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 37-44
Author(s):  
ZBIGNIEW M. OSSOWSKI

Background: The loss of muscle function and reduced mobility levels are the main reasons for the limitations of independence and disability in older people. The main aim of this study was to determine the relationship between the skeletal muscle index and mobility in older women. Material and methods: ‪The study involved 166 older women. Skeletal muscle mass and other body components were determined by bioimpedance using an InBody 720 device. Functional mobility was evaluated with the timed up-and-go test. 30-second chair stand was also used to measure the level of functional strength in lower extremities. Results: ‪The skeletal muscle index was positively correlated with functional mobility (r=-0.22; p=0.00) and 30-second chair stand (r=-0.47; p=0.00). However, the strength of lower extremities was a significantly better parameter in predicting mobility in older women than the skeletal muscle index and skeletal muscle mass. Conclusions: The functional strength of lower extremity muscles and the skeletal muscle index can have a positive effect on functional mobility in older people. The results may be helpful in clinical practice when diagnosing mobility limitations and in the process of programming physical activity of older women aimed at the prevention of sarcopenia.


2018 ◽  
pp. 1-3
Author(s):  
B.C. Clark

Sarcopenia was originally conceptualized as the age-related loss of skeletal muscle mass. Over the ensuing decades, the conceptual definition of sarcopenia has changed to represent a condition in older adults that is characterized by declining muscle mass and function, with “function” most commonly conceived as muscle weakness and/or impaired physical performance (e.g., slow gait speed). Findings over the past 15-years, however, have demonstrated that changes in grip and leg extensor strength are not primarily due to muscle atrophy per se, and that to a large extent, are reflective of declines in the integrity of the nervous system. This article briefly summarizes findings relating to the complex neuromuscular mechanisms that contribute to reductions in muscle function associated with advancing age, and the implications of these findings on the development of effective therapies.


Sign in / Sign up

Export Citation Format

Share Document