Equibiaxial Flexure Strength of Glass: Influence of Glass Plate Size and Equibiaxial Ring Ratio

2014 ◽  
Vol 5 (4) ◽  
pp. 384-392 ◽  
Author(s):  
Jeffrey J. Swab ◽  
Parimal J. Patel ◽  
Xuan Tran ◽  
Luke Gilde ◽  
Ernest Luoto ◽  
...  
Author(s):  
J. Hanker ◽  
K. Cowden ◽  
R. Noecker ◽  
P. Yates ◽  
N. Georgiade ◽  
...  

Composites of plaster of Paris (PP) and hydroxylapatite (HA) particles are being applied for the surgical reconstruction of craniofacial bone defects and for cosmetic surgery. Two types of HA particles are being employed, the dense sintered ceramic (DHA) and the porous, coralline hydroxylapatite (PHA) particles. Excess water is expressed out of the moistened HA/PP mixture prior to implantation and setting by pressing it in a non-tapered syringe against a glass plate. This results in implants with faster setting times and greater mechanical strengths. It was therefore of interest to compare samples of the compressed versus noncompressed mixtures to see whether or not any changes in their microstructure after setting could be related to these different properties.USG Medical Grade Calcium Sulfate Hemihydrate (which has the lowest mortar consistency of any known plaster) was mixed with an equal weight of Interpore 200 particles (a commercial form of PHA). After moistening with a minimum amount of water, disc-shaped noncompressed samples were made by filling small holes (0.339 in. diameter x 0.053 in. deep) in polypropylene molds with a microspatula.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2018 ◽  
Vol 69 (10) ◽  
pp. 2948-2939 ◽  
Author(s):  
Carmen Moldovan ◽  
Lidia Dobrescu ◽  
Violeta Ristoiu ◽  
Bogdan Firtat ◽  
Silviu Dinulescu ◽  
...  

This article presents experimental measurements performed in order to connect a neuronal cell culture to an exoprosthesis. The experiments focused on the biosignals� acquisition from the cell culture. A special gold-plated glass plate device was realized and several constructive variants were analyzed. A Olympus microscope with fluorescence and photo system was used. The acquisition of bio signals from the neuron culture is realized and described in the paper. The measurements were made in the sterile environment within the laboratory of Institute of Cellular Biology and Pathology. The measurements have been made for the pair of electrodes 1-1 at the edge of the glass plate.


2021 ◽  
Vol 11 (6) ◽  
pp. 2484
Author(s):  
Zhou Lei ◽  
Esteban Rougier ◽  
Earl E. Knight ◽  
Mengyan Zang ◽  
Antonio Munjiza

A driving technical concern for the automobile industry is their assurance that developed windshield products meet Federal safety standards. Besides conducting innumerable glass breakage experiments, product developers also have the option of utilizing numerical approaches that can provide further insight into glass impact breakage, fracture, and fragmentation. The combined finite-discrete element method (FDEM) is one such tool and was used in this study to investigate 3D impact glass fracture processes. To enable this analysis, a generalized traction-separation model, which defines the constitutive relationship between the traction and separation in FDEM cohesive zone models, was introduced. The mechanical responses of a laminated glass and a glass plate under impact were then analyzed. For laminated glass, an impact fracture process was investigated and results were compared against corresponding experiments. Correspondingly, two glass plate impact fracture patterns, i.e., concentric fractures and radial fractures, were simulated. The results show that for both cases, FDEM simulated fracture processes and fracture patterns are in good agreement with the experimental observations. The work demonstrates that FDEM is an effective tool for modeling of fracture and fragmentation in glass.


Author(s):  
A. E. Lebedev ◽  
A. B. Kapranova ◽  
I. S. Gudanov ◽  
D. S. Dolgin ◽  
A. A. Vatagin

2021 ◽  
Vol 52 (2) ◽  
pp. 115-146
Author(s):  
Lindsay Smith Zrull

Starting in the late 19th century, the Harvard Observatory hired women to study stars via the Astronomical Photographic Glass Plate Collection. Some of these women—such as Annie Jump Cannon, Henrietta Leavitt, and Cecilia Payne-Gaposchkin—made discoveries that changed astrophysics forever. However, they were far from the only women working at the Harvard Observatory during the era of astronomical glass plate photography. Historically, most of these women have been anonymous. The names found on over 400,000 glass plate envelopes were compiled into a list of all the women who left their mark on the collection between 1875 and 1975. Through this list of names, it is revealed that Harvard’s glass plate collection acted as a haven for women who wanted to study the stars, long before they found equality in the field of astronomy.


2021 ◽  
Vol 11 (9) ◽  
pp. 4015
Author(s):  
Peter Hellwig ◽  
Klaus Schricker ◽  
Jean Pierre Bergmann

High processing speeds enormously enlarge the number of possible fields of application for laser processes. For example, material removal for sheet cutting using multiple passes or precise mass corrections can be achieved by means of spatter formation. For a better understanding of spatter formation at processing speeds of several hundred meters per minute, characterizations of the processing zone are required. For this purpose, a 400 W single-mode fiber laser was used in this study to process stainless steel AISI 304 (1.4301/X5CrNi18-10) with speeds of up to 600 m/min. A setup was developed that enabled a lateral high-speed observation of the processing zone by means of a glass plate flanking. This approach allowed for the measurement of several dimensions, such as the penetration depth, spatter formation, and especially, the inclination angle of the absorption front. It was shown that the loss of mass started to significantly increase when the absorption front was inclined at about 60°. In combination with precise weighings, metallographic examinations, and further external process observations, these findings provided an illustration of four empirical process models for different processing speeds.


Sign in / Sign up

Export Citation Format

Share Document