Post‐transplant cyclophosphamide limits reactive donor T cells and delays the development of graft‐versus‐host disease in a humanised mouse model

Immunology ◽  
2021 ◽  
Author(s):  
Sam Raj Adhikary ◽  
Peter Cuthbertson ◽  
Leigh Nicholson ◽  
Katrina M. Bird ◽  
Chloe Sligar ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1335-1335
Author(s):  
Sydney X Lu ◽  
Maria Lia Palomba ◽  
Il-Kang Na ◽  
Theis Terwey ◽  
Onder Alpdogan ◽  
...  

Abstract Abstract 1335 Poster Board I-357 Alloreactive T cells are crucial for graft-versus-host-disease (GVHD) pathophysiology, and we hypothesized that controlling their trafficking can ameliorate GVHD. P-selectin is a dimeric glycoprotein found on most inflamed endothelium, which interacts with multiple lectin-type molecules on leukocytes, including T cells. We used murine allogenienc BMT models to study GVHD and found that P-selectin−/− recipients exhibited significantly less GVHD mortality and morbidity, as well as decreased GVHD of the skin, liver and small bowels. However, WT and P-selectin−/− allo-BMT recipients had comparable large bowel GVHD. This decrease in target organ and systemic GVHD was associated with diminished infiltration of alloactivated T cells into the Peyer's Patches and small bowels, coupled with increased numbers of donor T cells in the spleen and secondary lymphoid organs (SLO) on day 14 and day 35 post-transplant. However, donor alloreactive T cells in WT and P-selectin−/− allo-BMT recipients had similar alloactivation and apoptosis, and donor alloactivated T cells from WT and P-selectin−/− allo-BMT recipients with GVHD showed similar proliferation in vitro in a mixed leukocyte reaction, suggesting that the inflammatory environment in WT and P-selectin−/− recipients was comparable. Finally, non-transplanted P-selectin−/− mice, and P-selectin−/− mice which had received the allo-BMT conditioning regimen but not a donor graft, had similar cellularity in the majority of tissues examined as corresponding WT controls. This suggests that the differential cellularity of donor alloactivated T cells in WT and P-selectin−/− allo-BMT recipients with GVHD is probably largely dependent on trafficking and tissue infiltration during inflammation. Since P-selectin glycoprotein ligand 1 (PSGL1) is the best-described P-selectin ligand, and all leukocytes constitutively bear high levels of membrane PSGL1, we next hypothesized that PSGL1−/− donor alloreactive T cells would be defective in trafficking into GVHD target organs, and that PSGL1−/− donor T cells would cause decreased target organ damage, systemic GVHD, and mortality. However, allo-BMT recipients of WT and PSGL1−/− donor T cells had comparable survival and clinical GVHD scores, and further analyses on day 14 post-transplant revealed that recipients of WT and PSGL1−/− donor T cells also had similar numbers of donor alloactivated T cells in the spleen, liver, mesenteric and peripheral lymph nodes, and Peyer's Patches. Additionally, WT and PSGL1−/− donor T cells had comparable proliferation as measured by CFSE dilution, and comparable alloactivation in vivo as determined by levels of CD25, CD44, and CD62L, suggesting similar T cell function. As PSGL1−/− and WT donor T cells appeared to have equal functionality and accumulated in GVHD target tissues and lymphoid tissues in a similar fashion, we asked whether PSGL1−/− T cells might display other P-selectin ligands. Flow cytometric analyses of T cells from non-transplanted PSGL1−/− mice, and analyses of PSGL1−/− alloactivated T cells on day 14 after allo-BMT, revealed that these cells displayed substantial levels of cell-surface P-selectin ligands as defined by positive staining with recombinant P-selectin-IgG-Fc fusion protein at levels similar to those found on WT T cells, suggesting that although absence of P-selectin on host tissues may ameliorate GVHD, multiple donor leukocyte P-selectin ligands interact meaningfully with P-selectin. Our studies suggest that P-selectin may be required for trafficking into inflamed tissues but not SLO, and that donor T cells may utilize multiple P-selectin ligands apart from PSGL1 to interact with P-selectin and traffic into inflamed tissues during GVHD. We conclude that targeting P-selectin may be a viable target for GVHD prophylaxis or treatment. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2019 ◽  
Vol 134 (23) ◽  
pp. 2092-2106 ◽  
Author(s):  
Andrew N. Wilkinson ◽  
Karshing Chang ◽  
Rachel D. Kuns ◽  
Andrea S. Henden ◽  
Simone A. Minnie ◽  
...  

Key Points DCs are the principal source of IL-6 dysregulation after alloSCT. IL-6–dependent GVHD is driven by classical signaling of IL-6R on donor T cells but is regulated by trans signaling.



2006 ◽  
Vol 176 (6) ◽  
pp. 3383-3390 ◽  
Author(s):  
Xue-Zhong Yu ◽  
Michael H. Albert ◽  
Claudio Anasetti


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 426-426
Author(s):  
Scott R. Solomon ◽  
Thao Tran ◽  
Charles S. Carter ◽  
Nancy Hensel ◽  
Laura Wisch ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic stem cell transplant (SCT), especially in older patients. We previously showed that host-reactive donor T cells are selectively depleted (SD) from an allograft ex vivo, following a short co-culture of donor cells with irradiated T cell stimulators from the recipient and subsequent treatment with an anti-CD25 immunotoxin. We report a pilot study to test the hypothesis that GVHD could be decreased in a cohort of elderly patients receiving SD allografts from HLA-identical sibling donors. Sixteen patients, median age 65 years (range 51–73), with advanced hematologic malignancies were transplanted following reduced-intensity conditioning with fludarabine and either cyclophosphamide (n=5), melphalan (n=5), or busulfan (n=6). Cyclosporine was used as the only additional GVHD prophylaxis. SD allografts contained a median CD34 dose of 4.5x106/kg (range 3.5–7.3) and an SD CD3 dose of 1.0x108/kg (range 0.2–1.5). Fifteen patients achieved sustained engraftment. The helper T lymphocyte precursor (HTLp) frequency assay demonstrated depletion of host-reactive donor T cells in 9/11 cases tested from a mean of 1/182,089 to 1/822,354 (mean 5.5-fold depletion), while third party responses were conserved. Kaplan-Meier estimates of probability of grade II-IV and grade III-IV acute GVHD were lower than those seen in a historical control group of patients receiving cyclosporine alone for GVHD prophylaxis (35±13% vs. 57±10%, p=0.34) and (7±6% vs. 38±6%, p=0.05), respectively. Of note, the two patients who developed visceral (gut ± liver) GVHD showed ineffective allodepletion by HTLp (figure). Chronic GVHD occurred in five of 14 evaluable patients. At a median follow-up of 212 days (range 60 – 690), seven of sixteen patients remain alive and in remission. Relapse deaths occurred in four patients (refractory AML [2], therapy-related MDS [1], and CMML [1]). Non-relapse mortality in this high-risk cohort of patients included graft failure [1], GVHD [2], infection [1], and myocardial infarction [1]. In summary, CD25-directed allodepletion of stem cell allografts can reduce clinically relevant acute GVHD following matched related donor transplantation. Figure Figure



Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5167-5167
Author(s):  
Yihuan Chai ◽  
Huiying Qiu ◽  
Hui Lv

Abstract One of the main goals in allogeneic bone marrow(BM) transplantation is the abrogation of graft-versus-host disease (GVHD) with the preservation of antileukemia and antiviral activity. The Study present a selective T cell depletion strategy based on the physical separation of the alloreactive T cells, which were identified by expression of two activation-induced antigens (CD25 and CD69). T cells from C57BL/6(H-2b) mice were first activated with BALB/c (H-2d) recipient spleen cells in a 2-day mixed-lymphocyte-culture (MLC). Following this activation, this compound is selectively depleted based on expression of two activation-induced antigens CD25 and CD69 using magnetic cell sorting. The depleted cells or the untreated cells were then rechallenged respectively in a secondary MLC, with the same stimulator cells or a third-party (DBAH-2k) or tumor- specific (SP2/0, BALB/c-origin myeloma) cells. Cells proliferation were assayed at the indicated time points(1, 2, 3, 4, 5 days). These treated cells or control-cultured cells (2.0×106) mixed with 5.0×106 BM cells from C57BL/6 were transfused respectively by the trail vain into the lethally irradiated BALB/c to observe the survival time, GVHD incidence and pathological analysis. MLC assays demonstrated that this technique led to a significant decrease in alloreactivity of donor cells(29.02~64.17%), which at the same time preserved reactivity against third party cells(49.61~75.69%)and anti-tumor cells(61.14~68.62%). The mice in the group of control-coclutured were died of acute GVHD within 24days. The 7 recipient mice in the treated group were free of acute GVHD, and 3 mice were died of acute GVHD (aGVHD) within 23 days. MACS-based ex-vivo depletion of alloreactive donor T cells based on expression of two activation-induced antigens (CD25 and CD69) could inhibit anti-host responses, by contrast, anti-SP2/O and anti-third-party responses were preserved. Cotransplantation of these selected depleted cells and BM cells could reduce aGVHD.



Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2546-2546
Author(s):  
Victoria Harries ◽  
Rachel Dickinson ◽  
Venetia Bigley ◽  
Matthew Collin

Abstract Abstract 2546 Alemtuzumab-containing reduced intensity transplantation regimens frequently induce a state of partial T cell chimerism in the blood of the recipient. It has been widely shown that partial T cell chimerism is associated with freedom from graft versus host disease (GVHD) and that the occurrence of GVHD is often associated with rapidly rising donor T cell engraftment. The mechanism by which this occurs remains unknown and recipient cells may be killed, out-competed for homeostatic niches or simply diluted out by expanding donor T cells. The skin, a target organ of GVHD, normally contains T cells which enter from the blood in the steady state. Studies in mice have highlighted the gate-keeping function of inflammation in allowing trafficking of host-reactive donor T cells into tissues during conversion from mixed to full donor chimerism in blood. This implies that the equilibration of donor engraftment in the blood and tissue may occur more rapidly in patients at risk for GVHD. To test this hypothesis, we set out to define the relationship between skin and blood donor T cell engraftment in patients with and without GVHD. Methods: We studied a group of 51 patients receiving fludarabine melphalan (FM) conditioning with alemtuzumab 30mg for matched related donors and 60mg for matched unrelated donors. Skin biopsies were obtained at 28 and 100 days post transplant, dermal T cells isolated by migration and chimerism assessed in sex-mismatched transplants by combined immunofluorescence/in situ hybidization for XY chromosomes. Peripheral blood myeloid (CD15+) and T cell (CD3+) chimerism was determined by short tandem repeat amplification at monthly intervals after transplantation. All patients gave consent for clinical follow up and post transplant blood and skin sampling for research purposes, according to protocols approved by the local research ethics committee of Northumberland and North Tyneside. Results: All patients achieved >95% myeloid engraftment by day 100. Median (range) T cell engraftment was variable and significantly higher after MUD transplants: 70% (9-99%) than MRD transplants: 21% (5-85%; Mann Witney p <0.05). The incidence of acute GVHD was also greater after MUD transplantation at 47% (grade I or II) compared with 11% (grade I only) for MRD recipients. Overall a positive correlation was observed between donor T cell engraftment in skin and blood at all time points (r = 0.5792; P 0.0187) and at 100 days (r = 0.6570; P 0.0281). Analysis of the data with respect to GVHD showed a further interesting finding. Patients who developed GVHD had the closest correlation between blood and skin donor engraftment, even when they were in a state of partial T cell chimerism prior to the onset of GVHD. Patients who did not develop GVHD but nonetheless eventually achieved full donor engraftment in the blood tended to show lower levels of donor T cell engraftment in the dermis at day 100. Individual examples of patients who did not develop GVHD are: blood 77%, dermis 37%; blood 77%, dermis 6%; blood 92%, dermis 25%, compared with patients who did develop GVHD: blood 55%, dermis 56%; blood 90%, dermis 75%; blood 100%, dermis 100%. Conclusion: This analysis supports the hypothesis that the equilibration of blood and tissue donor T cells is influenced by GVHD and may offer a means to predict patients at risk of GVHD after withdrawal of immunosuppression or donor lymphocyte infusion. Disclosures: No relevant conflicts of interest to declare.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1969-1969
Author(s):  
Joseph Leventhal ◽  
Paul A Cardenas ◽  
Mary J Elliott ◽  
Suzanne T Ildstad

Abstract Abstract 1969 Background: It has been known for over 50 years that hematopoietic stem cell (HSC) chimerism induces tolerance to transplanted tissues and cells. However, the widespread application of this approach has been constrained by graft-versus-host disease (GVHD), the need for close genetic matching between donor and recipient, and the toxicity of conditioning the recipient to establish chimerism. We have demonstrated that full donor chimerism can be established with minimal toxicity in highly-mismatched unrelated and related kidney allograft recipients through nonmyeloablative conditioning followed by infusion of a bioengineered CD8+/TCR− facilitating cell stem cell graft (FCRx), to avoid the risk of GVHD while achieving chimerism. Methods: Twelve HLA-mismatched living donor renal transplant recipients have been entered into a phase 2 trial (IDE 13947) involving low-intensity conditioning (fludarabine, cyclophosphamide, 200 cGy TBI days −4 to −1). Patients received a living donor kidney transplant on day 0, followed by infusion of G-CSF cryopreserved FCRx on day +1. All subjects were discharged by post-operative day 3 and managed as outpatients. We herein present data regarding the immunologic recovery observed in our first 8 evaluable patients with > 6 months follow up. Results: All patients experienced an expected nadir period affecting leukocytes (ANC < 500, range 2–14 days) and platelets (< 50K, range 0–20 days). All patients demonstrated peripheral blood macrochimerism at 1 month post-transplant, ranging from 6% to 100%. Chimerism was gradually lost in two patients at 3 and 6 months post-transplant. Patients demonstrated in vitro evidence of donor-specific hyporesponsiveness (DSH) by MLR +/− CML as early as 3 months post-transplant; of interest, DSH also was observed and persisted in the two patients who lost peripheral blood chimerism. Patients at > 1 yr post-transplant are immunocompetent to respond to mitogen (PHA), MHC-disparate third-party alloantigen, and tetanus in in vitro proliferative assays. Immunologic reconstitution in kidney + FCRx recipients was characterized by a blunted return in CD4+ T cells, with inversion of the CD4/CD8 ratio. A preferential recovery of memory (CD4+/CD45RO+/CD62L+/−) vs. naïve (CD4+/CD45RA+/CD62L+) T cells was observed. Although total number of CD4+/CD25+/CD127lo/FoxP3+ Treg was reduced initially, an increase in the CD4+ Treg /CD4+Teff (CD4+/CD45RA+/CD62L−) ratio was seen in patients exhibiting durable chimerism. In addition, an expansion of central memory CD8+ T cells was observed in durably chimeric recipients. No patient developed donor-specific antibodies as assessed by flow cytometric analysis. The absence of GVHD correlated with in vitro hyporesponsiveness of the fully chimeric recipients against archived pre-treatment recipient APC. Conclusions: Combined kidney + FCRx recipients demonstrate characteristic immunophenotypic and functional changes associated with reconstitution following transplantation; additional studies are required to determine whether these changes are mechanistically related to the persistence of chimerism and/or prevention of GVHD. Disclosures: Ildstad: Regenerex LLC: Equity Ownership.



Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4038-4044 ◽  
Author(s):  
Yoichiro Kusunoki ◽  
Wei Chen ◽  
Paul J. Martin

In allogeneic marrow transplantation, donor T cells that recognize recipient alloantigens prevent rejection but also cause graft-versus-host disease (GVHD). To evaluate whether the ability to prevent marrow graft rejection could be dissociated from the ability to cause GVHD, we generated a panel of four different CD8 cytotoxic T-lymphocyte clones specific for H2d alloantigens. Three of the clones caused no overt toxicity when as many as 20 × 106 cells were infused intravenously into irradiated H2d-positive recipients, and one clone caused acute lethal toxicity within 1 to 3 days after transferring 10 × 106cells into H2d-positive recipients. One clone that did not cause toxicity was able to prevent rejection of (C57BL/6J × C3H/HeJ)F1 marrow in 800 cGy-irradiated (BALB/cJ × C57BL/6J)F1 recipients without causing GVHD. Large numbers of cells and exogenously administered interleukin-2 were required to prevent rejection. These results with different CD8 clones suggest that GVHD and prevention of rejection could be separable effects mediated by distinct populations of donor T cells that recognize recipient alloantigens.



Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 2973-2980 ◽  
Author(s):  
Jonathan S. Serody ◽  
Susan E. Burkett ◽  
Angela Panoskaltsis-Mortari ◽  
Judith Ng-Cashin ◽  
Eileen McMahon ◽  
...  

To investigate the mechanism by which macrophage inflammatory protein-1α (MIP-1α) affects graft-versus-host disease (GVHD), the expression and function of MIP-1α in 2 murine models of GVHD were evaluated. In irradiated class I and class II disparate recipients, the expression of messenger RNA (mRNA) and protein for MIP-1α was significantly increased in GVHD target organs after transfer of allogeneic lymphocytes compared to syngeneic lymphocytes. When lymphocytes unable to make MIP-1α were transferred, there was a decrease in the production of MIP-1α in the liver, lung, and spleen of bm1 (B6.C-H2bm1/By) and bm12 (B6.C-H2bm12/KhEg) recipients compared to the transfer of wild-type splenocytes. At day 6 there was a 4-fold decrease in the number of transferred CD8+ T cells in the lung and approximately a 2-fold decrease in the number of CD8+ T cells in the liver and spleen in bm1 recipients after transfer of MIP-1α–deficient (MIP-1α−/−) splenocytes compared to wild-type (MIP-1α+/+) splenocytes. These differences persisted for 13 days after splenocyte transfer. In contrast, the number of donor CD4+ T cells found in the liver and lung was significantly increased after the transfer of MIP-1α−/− compared to wild-type splenocytes in bm12 recipients from day 6 through day 10. Thus, the transfer of allogeneic T cells was associated with the enhanced expression of MIP-1α in both a class I and class II mismatch setting. However, the increased expression only led to enhanced recruitment of CD8+, but not CD4+, donor T cells. Production of MIP-1α by donor T cells is important in the occurrence of GVHD and functions in a tissue-dependent fashion.



Sign in / Sign up

Export Citation Format

Share Document