The effect of head orientation and personalized ventilation on bioaerosol deposition from a cough

Indoor Air ◽  
2021 ◽  
Author(s):  
Jingcui Xu ◽  
Cunteng Wang ◽  
Sau Chung Fu ◽  
Christopher Y. H. Chao
2018 ◽  
Vol 6 (2) ◽  
pp. 98-114 ◽  
Author(s):  
Hassan K. Abdullah ◽  
Haneen H. Rahman

Improvement of  free convection heat transfer from three finned cylinders arranged at a triangle shape fixed between two walls has been investigated in this study. Three mild steel finned cylinders fixed between two walls from Pyrex glass have been used as a test rig. It has been changed the spacing between the cylinders (X/D=1,2,3 & S/D=2,4,6) and the head orientation of a triangle to the top under constant heat flux values (38, 254, 660, 1268) W/m2 and compare with case of three finned cylinders arranged in vertical array in line fixed between two wall. The experiments are carried for Rayleigh number (Ra) from (15x103 to 14 x104 ) and Prandtl  number from (0.706-0.714 ). The results indicated an increase in Nu with increasing Ra for all cylinders. Furthermore,hx and Nu increased proportionally with the increasing of cylinder spacings for all heat fluxes. Also the experimental results show the case of triangle arrangement is improvement the heat transfer more than case of vertical arrangement. Heat transfer dimensionless correlating equation is also proposed.              Nomeclature: Ax: surface area(m2), T∞: surrounding temperature(k), D: the outer diameter of fin (m), Kf: the thermal conductivity for air at film temperature(W/m.k), hx: Local convection heat transfer(W/m2.k),  Gravitational acceleration(m/s2), I: Electric current (Amp), Nu: Nusselt number, Pr: Prandtl number


2013 ◽  
Vol 21 (2) ◽  
pp. 211-219
Author(s):  
Shang LU ◽  
Ye LIU ◽  
Xiaolan FU

Author(s):  
Giuditta Battistoni ◽  
Diana Cassi ◽  
Marisabel Magnifico ◽  
Giuseppe Pedrazzi ◽  
Marco Di Blasio ◽  
...  

This study investigates the reliability and precision of anthropometric measurements collected from 3D images and acquired under different conditions of head rotation. Various sources of error were examined, and the equivalence between craniofacial data generated from alternative head positions was assessed. 3D captures of a mannequin head were obtained with a stereophotogrammetric system (Face Shape 3D MaxiLine). Image acquisition was performed with no rotations and with various pitch, roll, and yaw angulations. On 3D images, 14 linear distances were measured. Various indices were used to quantify error magnitude, among them the acquisition error, the mean and the maximum intra- and inter-operator measurement error, repeatability and reproducibility error, the standard deviation, and the standard error of errors. Two one-sided tests (TOST) were performed to assess the equivalence between measurements recorded in different head angulations. The maximum intra-operator error was very low (0.336 mm), closely followed by the acquisition error (0.496 mm). The maximum inter-operator error was 0.532 mm, and the highest degree of error was found in reproducibility (0.890 mm). Anthropometric measurements from alternative acquisition conditions resulted in significantly equivalent TOST, with the exception of Zygion (l)–Tragion (l) and Cheek (l)–Tragion (l) distances measured with pitch angulation compared to no rotation position. Face Shape 3D Maxiline has sufficient accuracy for orthodontic and surgical use. Precision was not altered by head orientation, making the acquisition simpler and not constrained to a critical precision as in 2D photographs.


2021 ◽  
Vol 11 (4) ◽  
pp. 1570
Author(s):  
Bogdan Ioan Băcilă ◽  
Hyunkook Lee

This paper presents a subjective study conducted on the perception of auditory attributes depending on listener position and head orientation in an enclosed space. Two elicitation experiments were carried out using the repertory grid technique—in-situ and laboratory experiments—which aimed to identify perceptual attributes among 10 different combinations of the listener’s positions and head orientations in a concert hall. It was found that, between the in-situ and laboratory experiments, the listening positions and head orientations were clustered identically. Ten salient perceptual attributes were identified from the data obtained from the laboratory experiment. Whilst these included conventional attributes such as ASW (apparent source width) and LEV (listener envelopment), new attributes such as PRL (perceived reverb loudness), ARW (apparent reverb width) and Reverb Direction were identified, and they are hypothesised to be sub-attributes of LEV (listener envelopment). Timbral characteristics such as Reverb Brightness and Echo Brightness were also identified as salient attributes, which are considered to potentially contribute to the overall perceived clarity.


2020 ◽  
Vol 24 ◽  
pp. 233121652098029
Author(s):  
Allison Trine ◽  
Brian B. Monson

Several studies have demonstrated that extended high frequencies (EHFs; >8 kHz) in speech are not only audible but also have some utility for speech recognition, including for speech-in-speech recognition when maskers are facing away from the listener. However, the contribution of EHF spectral versus temporal information to speech recognition is unknown. Here, we show that access to EHF temporal information improved speech-in-speech recognition relative to speech bandlimited at 8 kHz but that additional access to EHF spectral detail provided an additional small but significant benefit. Results suggest that both EHF spectral structure and the temporal envelope contribute to the observed EHF benefit. Speech recognition performance was quite sensitive to masker head orientation, with a rotation of only 15° providing a highly significant benefit. An exploratory analysis indicated that pure-tone thresholds at EHFs are better predictors of speech recognition performance than low-frequency pure-tone thresholds.


Sign in / Sign up

Export Citation Format

Share Document