Characteristics of ultrafine particles emitted from 3D‐pens and effect of partition on children's exposure during 3D‐pen operation

Indoor Air ◽  
2021 ◽  
Author(s):  
Donghyun Kim ◽  
Kiyoung Lee
Author(s):  
Mehrdad Rafiepourgatabi ◽  
Alistair Woodward ◽  
Jennifer A. Salmond ◽  
Kim Natasha Dirks

Children walking to school are at a high risk of exposure to air pollution compared with other modes because of the time they spend in close proximity to traffic during their commute. The aim of this study is to investigate the effect of a walker’s route choice on their exposure to ultrafine particles (UFP) on the walk to school. During morning commutes over a period of three weeks, exposure to UFP was measured along three routes: two routes were alongside both sides of a busy arterial road with significantly higher levels of traffic on one side compared to the other, and the third route passed through quiet streets (the background route). The results indicate that the mean exposure for the pedestrian walking along the background route was half the exposure experienced on the other two routes. Walkers on the trafficked side were exposed to elevated concentrations (>100,000 pt/cc) 2.5 times longer than the low-trafficked side. However, the duration of the elevated exposure for the background route was close to zero. Public health officials and urban planners may use the results of this study to promote healthier walking routes to schools, especially those planned as part of organized commutes.


Author(s):  
Chihiro Kaito ◽  
Yoshio Saito

The direct evaporation of metallic oxides or sulfides does not always given the same compounds with starting material, i.e. decomposition took place. Since the controll of the sulfur or selenium vapors was difficult, a similar production method for oxide particles could not be used for preparation of such compounds in spite of increasing interest in the fields of material science, astrophysics and mineralogy. In the present paper, copper metal was evaporated from a molybdenum silicide heater which was proposed by us to produce the ultra-fine particles in reactive gas as shown schematically in Figure 1. Typical smoke by this method in Ar gas at a pressure of 13 kPa is shown in Figure 2. Since the temperature at a location of a few mm below the heater, maintained at 1400° C , were a few hundred degrees centigrade, the selenium powder in a quartz boat was evaporated at atmospheric temperature just below the heater. The copper vapor that evaporated from the heater was mixed with the stream of selenium vapor,and selenide was formed near the boat. If then condensed by rapid cooling due to the collision with inert gas, thus forming smoke similar to that from the metallic sulfide formation. Particles were collected and studied by a Hitachi H-800 electron microscope.Figure 3 shows typical EM images of the produced copper selenide particles. The morphology was different by the crystal structure, i.e. round shaped plate (CuSe;hexagona1 a=0.39,C=l.723 nm) ,definite shaped p1 ate(Cu5Se4;Orthorhombic;a=0.8227 , b=1.1982 , c=0.641 nm) and a tetrahedron(Cu1.8Se; cubic a=0.5739 nm). In the case of compound ultrafine particles there have been no observation for the particles of the tetrahedron shape. Since the crystal structure of Cu1.8Se is the anti-f1uorite structure, there has no polarity.


Author(s):  
Jun Liu ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Ultrafine particles usually have unique physical properties. This study illustrates how the lattice defects and interfacial structures between particles are related to the size of ultrafine crystalline gold particles.Colloidal gold particles were produced by reducing gold chloride with sodium citrate at 100°C. In this process, particle size can be controlled by changing the concentration of the reactant. TEM samples are prepared by transferring a small amount of solution onto a thin (5 nm) carbon film which is suspended on a copper grid. In this work, all experiments were performed with Philips 430T at 300 kV.With controlled seeded growth, particles of different sizes are produced, as shown in Figure 1. By a careful examination, it can be resolved that very small particles have lattice defects with complex interfaces. Some typical particle structures include multiple twins, resulting in a five-fold symmetry bicrystals, and highly disordered regions. Many particles are too complex to be described by simple models.


2004 ◽  
Vol 38 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Chandan Misra ◽  
Philip M. Fine ◽  
Manisha Singh ◽  
Constantinos Sioutas
Keyword(s):  

2008 ◽  
Vol 1 (2) ◽  
pp. 200-212
Author(s):  
ELIZABETH BULLEN

This paper investigates the high-earning children's series, A Series of Unfortunate Events, in relation to the skills young people require to survive and thrive in what Ulrich Beck calls risk society. Children's textual culture has been traditionally informed by assumptions about childhood happiness and the need to reassure young readers that the world is safe. The genre is consequently vexed by adult anxiety about children's exposure to certain kinds of knowledge. This paper discusses the implications of the representation of adversity in the Lemony Snicket series via its subversions of the conventions of children's fiction and metafictional strategies. Its central claim is that the self-consciousness or self-reflexivity of A Series of Unfortunate Events} models one of the forms of reflexivity children need to be resilient in the face of adversity and to empower them to undertake the biographical project risk society requires of them.


Sign in / Sign up

Export Citation Format

Share Document