Comparing Traditional Mass Balance Measurements with Long-term Volume Change Extracted from Topographical Maps: A Case Study of Storbreen Glacier in Jotunheimen, Norway, for the Period 1940-1997

1999 ◽  
Vol 81 (4) ◽  
pp. 467-476 ◽  
Author(s):  
Liss M. Andreassen
2012 ◽  
Vol 6 (4) ◽  
pp. 713-727 ◽  
Author(s):  
M. Huss

Abstract. This study addresses the extrapolation of in-situ glacier mass balance measurements to the mountain-range scale and aims at deriving time series of area-averaged mass balance and ice volume change for all glaciers in the European Alps for the period 1900–2100. Long-term mass balance series for 50 Swiss glaciers based on a combination of field data and modelling, and WGMS data for glaciers in Austria, France and Italy are used. A complete glacier inventory is available for the year 2003. Mass balance extrapolation is performed based on (1) arithmetic averaging, (2) glacier hypsometry, and (3) multiple regression. Given a sufficient number of data series, multiple regression with variables describing glacier geometry performs best in reproducing observed spatial mass balance variability. Future mass changes are calculated by driving a combined model for mass balance and glacier geometry with GCM ensembles based on four emission scenarios. Mean glacier mass balance in the European Alps is −0.31 ± 0.04 m w.e. a−1 in 1900–2011, and −1 m w.e. a−1 over the last decade. Total ice volume change since 1900 is −96 ± 13 km3; annual values vary between −5.9 km3 (1947) and +3.9 km3 (1977). Mean mass balances are expected to be around −1.3 m w.e. a−1 by 2050. Model results indicate a glacier area reduction of 4–18% relative to 2003 for the end of the 21st century.


2010 ◽  
Vol 7 (5) ◽  
pp. 8661-8702 ◽  
Author(s):  
B. Schaefli ◽  
M. Huss

Abstract. The hydrologic cycle of high mountainous catchments is frequently simulated with simple precipitation-discharge models representing the snow accumulation and ablation behavior of a very complex environment with a set of lumped equations accounting for altitudinal temperature and precipitation gradients. In this study, we present a methodology to include sparse snow depths measurements into the calibration process. Based on this methodology, we assess for a case study, the Rhonegletscher catchment (Switzerland), how much observed information we need to reliably calibrate the model, such that it reproduces the dominant system dynamics, discharge, as well as glacier mass balance. Here, we focus on the question whether observed discharge is sufficient as a calibration variable or whether we need annual or even seasonal glacier mass balance data. Introducing seasonally variable accumulation and ablation parameters is sufficient to enable the simple model to reproduce observed seasonal mass balances for the Rhonegletscher. Furthermore, our results suggest that calibrating the hydrological model exclusively on discharge can lead to wrong representations of the intra-annual accumulation and ablation processes and to a strong bias in long term glacier mass balance simulations. Adding only a few annual mass balance observations considerably reduces this bias. Calibrating exclusively on annual balance data can, in turn, lead to wrong seasonal mass balance simulations. Even if these results are case study specific, our conclusions provide valuable new insights into the benefit of different types of observations for calibrating hydrological models in glacier catchments. The presented multi-signal calibration framework and the simple method to calibrate a semi-lumped model on point observations has potential for application in other modeling contexts.


2012 ◽  
Vol 6 (2) ◽  
pp. 1117-1156 ◽  
Author(s):  
M. Huss

Abstract. This study addresses the extrapolation of single glacier mass balance measurements to the mountain range scale and aims at deriving time series of area-averaged mass balance and ice volume change for all glaciers in the European Alps for the period 1900–2100. Long-term mass balance series for 50 Swiss glaciers based on a combination of field data and modelling, and WGMS data for glaciers in Austria, France and Italy are used. A complete glacier inventory is available for the year 2003. Mass balance extrapolation is performed based on (1) arithmetic averaging, (2) glacier hypsometry, and (3) multiple regression. Given a sufficient number of data series, multiple regression with variables describing glacier geometry performs best in reproducing observed spatial mass balance variability. Future mass changes are calculated by driving a combined model for mass balance and glacier geometry with GCM ensembles based on four emission scenarios. Mean glacier mass balance in the European Alps is −0.32 ± 0.04 m w.e. a−1 in 1900–2011, and −1 m w.e. a−1 over the last decade. Total ice volume change since 1900 is −100 ± 13 km3; annual values vary between −5.9 km3 (1947) and +3.9 km3 (1977). Mean mass balances are expected to be around −1.3 m w.e. a−1 by 2050. Model results indicate a glacier area reduction to 4–18% relative to 2003 for the end of the 21st century.


2020 ◽  
Vol 743 ◽  
pp. 140668 ◽  
Author(s):  
Hironori Funaki ◽  
Kazuyuki Sakuma ◽  
Takahiro Nakanishi ◽  
Kazuya Yoshimura ◽  
Estiner Walusungu Katengeza

2020 ◽  
Vol 29 (4) ◽  
pp. 2049-2067
Author(s):  
Karmen L. Porter ◽  
Janna B. Oetting ◽  
Loretta Pecchioni

Purpose This study examined caregiver perceptions of their child's language and literacy disorder as influenced by communications with their speech-language pathologist. Method The participants were 12 caregivers of 10 school-aged children with language and literacy disorders. Employing qualitative methods, a collective case study approach was utilized in which the caregiver(s) of each child represented one case. The data came from semistructured interviews, codes emerged directly from the caregivers' responses during the interviews, and multiple coding passes using ATLAS.ti software were made until themes were evident. These themes were then further validated by conducting clinical file reviews and follow-up interviews with the caregivers. Results Caregivers' comments focused on the types of information received or not received, as well as the clarity of the information. This included information regarding their child's diagnosis, the long-term consequences of their child's disorder, and the connection between language and reading. Although caregivers were adept at describing their child's difficulties and therapy goals/objectives, their comments indicated that they struggled to understand their child's disorder in a way that was meaningful to them and their child. Conclusions The findings showed the value caregivers place on receiving clear and timely diagnostic information, as well as the complexity associated with caregivers' understanding of language and literacy disorders. The findings are discussed in terms of changes that could be made in clinical practice to better support children with language and literacy disorders and their families.


2018 ◽  
Vol 59 (1) ◽  
pp. 65-79
Author(s):  
Katarzyna Nikorowicz-Zatorska

Abstract The present paper focuses on spatial management regulations in order to carry out investment in the field of airport facilities. The construction, upgrades, and maintenance of airports falls within the area of responsibility of local authorities. This task poses a great challenge in terms of organisation and finances. On the one hand, an active airport is a municipal landmark and drives local economic, social and cultural development, and on the other, the scale of investment often exceeds the capabilities of local authorities. The immediate environment of the airport determines its final use and prosperity. The objective of the paper is to review legislation that affects airports and the surrounding communities. The process of urban planning in Lodz and surrounding areas will be presented as a background to the problem of land use management in the vicinity of the airport. This paper seeks to address the following questions: if and how airports have affected urban planning in Lodz, does the land use around the airport prevent the development of Lodz Airport, and how has the situation changed over the time? It can be assumed that as a result of lack of experience, land resources and size of investments on one hand and legislative dissonance and peculiar practices on the other, aviation infrastructure in Lodz is designed to meet temporary needs and is characterised by achieving short-term goals. Cyclical problems are solved in an intermittent manner and involve all the municipal resources, so there’s little left to secure long-term investments.


Sign in / Sign up

Export Citation Format

Share Document