Components of Short-Term Memory and Their Relation to Language Processing

2005 ◽  
Vol 14 (4) ◽  
pp. 204-208 ◽  
Author(s):  
Randi C. Martin

Verbal working memory consists of separable capacities for the retention of phonological and semantic information. Within the phonological domain, there are independent capacities for retaining input-phonological codes and output-phonological codes. The input-phonological capacity does not appear to be critical for language comprehension but is involved in verbatim repetition and long-term learning of new words. The semantic capacity is critical for both comprehension and production and for the learning of new semantic information. Different neural structures appear to underlie these capacities, with a left-parietal region involved in input-phonological retention and a left-frontal region involved in semantic retention.

2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
Tao Gui ◽  
Qi Zhang ◽  
Lujun Zhao ◽  
Yaosong Lin ◽  
Minlong Peng ◽  
...  

In recent years, long short-term memory (LSTM) has been successfully used to model sequential data of variable length. However, LSTM can still experience difficulty in capturing long-term dependencies. In this work, we tried to alleviate this problem by introducing a dynamic skip connection, which can learn to directly connect two dependent words. Since there is no dependency information in the training data, we propose a novel reinforcement learning-based method to model the dependency relationship and connect dependent words. The proposed model computes the recurrent transition functions based on the skip connections, which provides a dynamic skipping advantage over RNNs that always tackle entire sentences sequentially. Our experimental results on three natural language processing tasks demonstrate that the proposed method can achieve better performance than existing methods. In the number prediction experiment, the proposed model outperformed LSTM with respect to accuracy by nearly 20%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhua Gao ◽  
Yong Mo ◽  
Heng Zhang ◽  
Ruiyin Huang ◽  
Zilong Chen

With the development of computer technology, video description, which combines the key technologies in the field of natural language processing and computer vision, has attracted more and more researchers’ attention. Among them, how to objectively and efficiently describe high-speed and detailed sports videos is the key to the development of the video description field. In view of the problems of sentence errors and loss of visual information in the generation of the video description text due to the lack of language learning information in the existing video description methods, a multihead model combining the long-term and short-term memory network and attention mechanism is proposed for the intelligent description of the volleyball video. Through the introduction of the attention mechanism, the model pays much attention to the significant areas in the video when generating sentences. Through the comparative experiment with different models, the results show that the model with the attention mechanism can effectively solve the loss of visual information. Compared with the LSTM and base model, the multihead model proposed in this paper, which combines the long-term and short-term memory network and attention mechanism, has higher scores in all evaluation indexes and significantly improved the quality of the intelligent text description of the volleyball video.


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


1978 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Mary Anne Herndon

In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. This recombination process can be used to relieve the limited storage capacity constraint of short term memory and subsequently increase processing efficiency. The results of the simulation give a favorable indication of the success for the use of cluster analysis as a tool to simulate the encoding function in the detection of semantically similar paragraphs.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Ning An ◽  
Shi-Ying Sun ◽  
Xiao-Guang Zhao ◽  
Zeng-Guang Hou

Visual tracking is a challenging computer vision task due to the significant observation changes of the target. By contrast, the tracking task is relatively easy for humans. In this article, we propose a tracker inspired by the cognitive psychological memory mechanism, which decomposes the tracking task into sensory memory register, short-term memory tracker, and long-term memory tracker like humans. The sensory memory register captures information with three-dimensional perception; the short-term memory tracker builds the highly plastic observation model via memory rehearsal; the long-term memory tracker builds the highly stable observation model via memory encoding and retrieval. With the cooperative models, the tracker can easily handle various tracking scenarios. In addition, an appearance-shape learning method is proposed to update the two-dimensional appearance model and three-dimensional shape model appropriately. Extensive experimental results on a large-scale benchmark data set demonstrate that the proposed method outperforms the state-of-the-art two-dimensional and three-dimensional trackers in terms of efficiency, accuracy, and robustness.


Sign in / Sign up

Export Citation Format

Share Document