scholarly journals Aspects of comparative cranial mechanics in the theropod dinosaurs Coelophysis, Allosaurus and Tyrannosaurus

2005 ◽  
Vol 144 (3) ◽  
pp. 309-316 ◽  
Author(s):  
E. J. RAYFIELD
Keyword(s):  
2010 ◽  
Vol 277 (1698) ◽  
pp. 3327-3333 ◽  
Author(s):  
Manabu Sakamoto

Despite the great diversity in theropod craniomandibular morphology, the presence and distribution of biting function types across Theropoda has rarely been assessed. A novel method of biomechanical profiling using mechanical advantage computed for each biting position along the entirety of the tooth row was applied to 41 extinct theropod taxa. Multivariate ordination on the polynomial coefficients of the profiles reveals the distribution of theropod biting performance in function space. In particular, coelophysoids are found to occupy a unique region of function space, while tetanurans have a wide but continuous function space distribution. Further, the underlying phylogenetic structure and evolution of biting performance were investigated using phylogenetic comparative methods. There is a strong phylogenetic signal in theropod biomechanical profiles, indicating that evolution of biting performance does not depart from Brownian motion evolution. Reconstructions of ancestral function space occupation conform to this pattern, but phylogenetically unexpected major shifts in function space occupation can be observed at the origins of some clades. However, uncertainties surround ancestor estimates in some of these internal nodes, so inferences on the nature of these evolutionary changes must be viewed with caution.


2008 ◽  
Vol 276 (1657) ◽  
pp. 667-673 ◽  
Author(s):  
Darla K Zelenitsky ◽  
François Therrien ◽  
Yoshitsugu Kobayashi

This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds.


2017 ◽  
Vol 232 (1) ◽  
pp. 80-104 ◽  
Author(s):  
Daniel E. Barta ◽  
Sterling J. Nesbitt ◽  
Mark A. Norell

1996 ◽  
Vol 33 (12) ◽  
pp. 1655-1667 ◽  
Author(s):  
Darla K. Zelenitsky ◽  
L. V. Hills ◽  
Philip J. Currie

Examination of a large number of eggshell fragments collected from the Oldman Formation of southern Alberta reveals a greater ootaxonomic diversity than is known from complete eggs or clutches. Three new oogenera and oospecies of the ornithoid-ratite morphotype and one of the ornithoid-prismatic morphotype are established, based on the eggshell fragments. Porituberoolithus warnerensis oogen. et oosp. nov. and Continuoolithus canadensis oogen. et oosp. nov. have a microstructure similar to that of elongatoolithid eggs of theropod dinosaurs. Tristraguloolithus cracioides oogen. et oosp. nov. and Dispersituberoolithus exilis oogen. et oosp. nov. possess an external zone and thus have a microstructure like modern avian eggshell. Tristraguloolithus has a shell thickness, microstructure, and surface sculpture similar to those of recent bird eggshell of the family Cracidae (order Galliformes). Dispersituberoolithus exhibits the primitive or normal eggshell condition of some recent neognathous avian taxa. The ootaxa described indicate a diversity of both avian and theropod dinosaur egg layers within Devil's Coulee and Knight's Ranch, southern Alberta, during the Late Cretaceous.


Paleobiology ◽  
1990 ◽  
Vol 16 (2) ◽  
pp. 170-186 ◽  
Author(s):  
Stephen M. Gatesy

Living crocodilians and limbed lepidosaurs have a large caudofemoralis longus muscle passing from tail to femur. Anatomical and electromyographic data support the conclusion that the caudofemoralis is the principal femoral retractor and thus serves as the primary propulsive muscle of the hind limb. Osteological evidence of both origin and insertion indicates that a substantial caudofemoralis longus was present in archosaurs primitively and was retained in the clades Dinosauria and Theropoda. Derived theropods (e.g., ornithomimids, deinonychosaurs, Archaeopteryx and birds) exhibit features that indicate a reduction in caudofemoral musculature, including fewer caudal vertebrae, diminished caudal transverse processes, distal specialization of the tail, and loss of the fourth trochanter. This trend culminates in ornithurine birds, which have greatly reduced tails and either have a minute caudofemoralis longus or lack the muscle entirely.As derived theropod dinosaurs, birds represent the best living model for reconstructing extinct nonavian theropods. Bipedal, digitigrade locomotion on fully erect limbs is an avian feature inherited from theropod ancestors. However, the primitive saurian mechanisms of balancing the body (with a large tail) and retracting the limb (with the caudofemoralis longus) were abandoned in the course of avian evolution. This strongly suggests that details of the orientation (subhorizontal femur) and movement (primarily knee flexion) of the hind limb in extant birds are more properly viewed as derived, uniquely avian conditions, rather than as retentions of an ancestral dinosaurian pattern. Although many characters often associated with extant birds appeared much earlier in theropod evolution, reconstructing the locomotion of all theropods as completely birdlike ignores a wealth of differences that characterize birds.


2018 ◽  
Vol 66 ◽  
pp. 21-46 ◽  
Author(s):  
Marco Marzola ◽  
Octávio Mateus ◽  
Jesper Milàn ◽  
Lars B. Clemmensen

This article presents a synthesis of Palaeozoic and Mesozoic fossil tetrapods from Greenland, including an updated review of the holotypes and a new photographic record of the main specimens. All fossil tetrapods found are from East Greenland, with at least 30 different known taxa: five stem tetrapods (Acanthostega gunnari, Ichthyostega eigili, I. stensioi, I. watsoni, and Ymeria denticulata) from the Late Devonian of the Aina Dal and Britta Dal Formations; four temnospondyl amphibians (Aquiloniferus kochi, Selenocara groenlandica, Stoschiosaurus nielseni, and Tupilakosaurus heilmani) from the Early Triassic of the Wordie Creek Group; two temnospondyls (Cyclotosaurus naraserluki and Gerrothorax cf. pulcherrimus), one testudinatan (cf. Proganochelys), two stagonolepids (Aetosaurus ferratus and Paratypothorax andressorum), the eudimorphodontid Arcticodactylus, undetermined archosaurs (phytosaurs and both sauropodomorph and theropod dinosaurs), the cynodont Mitredon cromptoni, and three mammals (Haramiyavia clemmenseni, Kuehneotherium, and cf. ?Brachyzostrodon), from the Late Triassic of the Fleming Fjord Formation; one plesiosaur from the Early Jurassic of the Kap Stewart Formation; one plesiosaur and one ichthyosaur from the Late Jurassic of the Kap Leslie Formation, plus a previously unreported Late Jurassic plesiosaur from Kronprins Christian Land. Moreover, fossil tetrapod trackways are known from the Late Carboniferous (morphotype Limnopus) of the Mesters Vig Formation and at least four different morphologies (such as the crocodylomorph Brachychirotherium, the auropodomorph Eosauropus and Evazoum, and the theropodian Grallator) associated to archosaurian trackmakers are known from the Late Triassic of the Fleming Fjord Formation. The presence of rich fossiliferous tetrapod sites in East Greenland is linked to the presence of well-exposed continental and shallow marine deposits with most finds in terrestrial deposits from the Late Devonian and the Late Triassic.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3368 ◽  
Author(s):  
Joseph E. Peterson ◽  
Jonathan P. Warnock ◽  
Shawn L. Eberhart ◽  
Steven R. Clawson ◽  
Christopher R. Noto

The Cleveland-Lloyd Dinosaur Quarry (CLDQ) is the densest deposit of Jurassic theropod dinosaurs discovered to date. Unlike typical Jurassic bone deposits, it is dominated by the presence ofAllosaurus fragilis. Since excavation began in the 1920s, numerous hypotheses have been put forward to explain the taphonomy of CLDQ, including a predator trap, a drought assemblage, and a poison spring. In an effort to reconcile the various interpretations of the quarry and reach a consensus on the depositional history of CLDQ, new data is required to develop a robust taphonomic framework congruent with all available data. Here we present two new data sets that aid in the development of such a robust taphonomic framework for CLDQ. First, x-ray fluorescence of CLDQ sediments indicate elevated barite and sulfide minerals relative to other sediments from the Morrison Formation in the region, suggesting an ephemeral environment dominated by periods of hypereutrophic conditions during bone accumulation. Second, the degree of abrasion and hydraulic equivalency of small bone fragments dispersed throughout the matrix were analyzed from CLDQ. Results of these analyses suggest that bone fragments are autochthonous or parautochthonous and are derived from bones deposited in the assemblage rather than transported. The variability in abrasion exhibited by the fragments is most parsimoniously explained by local periodic re-working and re-deposition during seasonal fluctuations throughout the duration of the quarry assemblage. Collectively, these data support previous interpretations that the CLDQ represents an attritional assemblage in a poorly-drained overbank deposit where vertebrate remains were introduced post-mortem to an ephemeral pond during flood conditions. Furthermore, while the elevated heavy metals detected at the Cleveland-Lloyd Dinosaur Quarry are not likely the primary driver for the accumulation of carcasses, they are likely the result of multiple sources; some metals may be derived from post-depositional and diagenetic processes, and others are potentially produced from an abundance of decomposing vertebrate carcasses. These new data help to support the inferred depositional environment of the quarry as an ephemeral pond, and represent a significant step in understanding the taphonomy of the bonebed and Late Jurassic paleoecology in this region.


Sign in / Sign up

Export Citation Format

Share Document