Lead Zirconate Titanate Thin Films by Aerosol Plasma Deposition: Microstructure Analysis

2003 ◽  
Vol 86 (12) ◽  
pp. 2167-2175 ◽  
Author(s):  
Ming-Ren Huang ◽  
Cheng-Jien Peng ◽  
Hong-Yang Lu
2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


2003 ◽  
Vol 15 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
A. Wu ◽  
P. M. Vilarinho ◽  
I. Reaney ◽  
I. M. Miranda Salvado

1994 ◽  
Vol 17 (6) ◽  
pp. 1005-1014 ◽  
Author(s):  
S B Majumder ◽  
V N Kulkarni ◽  
Y N Mohapatra ◽  
D C Agrawal

1991 ◽  
Vol 74 (6) ◽  
pp. 1455-1458 ◽  
Author(s):  
Altaf H. Carim ◽  
Bruce A. Tuttle ◽  
Daniel H. Doughty ◽  
Sheri L. Martinez

1994 ◽  
Vol 33 (Part 1, No. 9B) ◽  
pp. 5287-5290 ◽  
Author(s):  
Kazuyoshi Torii ◽  
Sakae Saitoh ◽  
Yuzuru Ohji

Sign in / Sign up

Export Citation Format

Share Document