Sunscreens block the induction of epidermal ornithine decarboxylase by ultraviolet-B radiation: a new way of evaluating sunscreen efficacy in vivo

1982 ◽  
Vol 107 (2) ◽  
pp. 215-220 ◽  
Author(s):  
R.W. GANGE ◽  
R. MENDELSON
2003 ◽  
Vol 284 (5) ◽  
pp. C1140-C1148 ◽  
Author(s):  
Richard Weller ◽  
Ann Schwentker ◽  
Timothy R. Billiar ◽  
Yoram Vodovotz

Nitric oxide (NO) can either prevent or promote apoptosis, depending on cell type. In the present study, we tested the hypothesis that NO suppresses ultraviolet B radiation (UVB)-induced keratinocyte apoptosis both in vitro and in vivo. Irradiation with UVB or addition of the NO synthase (NOS) inhibitor N G-nitro-l-arginine methyl ester (l-NAME) increased apoptosis in the human keratinocyte cell line CCD 1106 KERTr, and apoptosis was greater when the two agents were given in combination. Addition of the chemical NO donor S-nitroso- N-acetyl-penicillamine (SNAP) immediately after UVB completely abrogated the rise in apoptosis induced by l-NAME. An adenoviral vector expressing human inducible NOS (AdiNOS) also reduced keratinocyte death after UVB. Caspase-3 activity, an indicator of apoptosis, doubled in keratinocytes incubated with l-NAME compared with the inactive isomer, d-NAME, and was reduced by SNAP. Apoptosis was also increased on addition of 1,H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Mice null for endothelial NOS (eNOS) exhibited significantly higher apoptosis than wild-type mice both in the dermis and epidermis, whereas mice null for inducible NOS (iNOS) exhibited more apoptosis than wild-type mice only in the dermis. These results demonstrate an antiapoptotic role for NO in keratinocytes, mediated by cGMP, and indicate an antiapoptotic role for both eNOS and iNOS in skin damage induced by UVB.


1990 ◽  
Vol 270 (3) ◽  
pp. 565-568 ◽  
Author(s):  
C F Rosen ◽  
D Gajic ◽  
Q Jia ◽  
D J Drucker

The cellular effects of u.v. radiation have been studied by using a hairless-mouse model in vivo. U.v. B radiation (u.v.B) induced the activity of the enzyme ornithine decarboxylase (ODC) in mouse epidermis. Maximal induction was noted after radiation with 90 mJ/cm2, and increased ODC activity was first detected 2 h after u.v.B exposure. U.v.B. also induced the expression of the ODC gene in a time- and dose-dependent manner, but did not induce the levels of actin mRNA transcripts. Cycloheximide treatment did not alter basal levels of ODC mRNA transcripts and had no effect on the u.v.B induction of ODC-gene expression. The results of these experiments demonstrate that u.v.B radiation induces both the expression of the ODC gene and the activity of the enzyme, and provides a useful ‘in vivo’ paradigm for the analysis of the molecular effects of u.v.B radiation.


Author(s):  
Yi‐Liang Liu ◽  
I‐Hsin Hsiao ◽  
Yen‐Hung Lin ◽  
Chih‐Li Lin ◽  
Ming‐Shiou Jan ◽  
...  

Ensho Saisei ◽  
2001 ◽  
Vol 21 (1) ◽  
pp. 79-83
Author(s):  
Toshiko Miyoshi-Koshio ◽  
Fumiaki Kura ◽  
Kiichi Yamamoto

2016 ◽  
Vol 155 ◽  
pp. 104-108 ◽  
Author(s):  
Anna Jussila ◽  
Riitta Huotari-Orava ◽  
Lasse Ylianttila ◽  
Timo Partonen ◽  
Erna Snellman

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
F Casetti ◽  
W Jung ◽  
U Wölfle ◽  
J Reuter ◽  
K Neumann ◽  
...  

2001 ◽  
Vol 74 (6) ◽  
pp. 805 ◽  
Author(s):  
Joan Breuer-McHam ◽  
Eric Simpson ◽  
Irene Dougherty ◽  
Makoto Bonkobara ◽  
Kiyoshi Ariizumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document