Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: examining terrestrial-aquatic linkages

1993 ◽  
Vol 29 (2) ◽  
pp. 259-274 ◽  
Author(s):  
FRANK J. TRISKA ◽  
JOHN H. DUFF ◽  
RONALD J. AVANZINO
2021 ◽  
Author(s):  
Heide Stein ◽  
Hans Jürgen Hahn

<p>In this study, the temporal variability of the hydrological exchange between stream water (SW) and groundwater (GW), colmation, hyporheic invertebrate fauna, organic matter (OM) and physicochemical parameters were examined for the period of one year. Sampling and measuring were conducted monthly from May 2019 to April 2020 at the Guldenbach river, a second order stream in Rhineland-Palatinate, Germany. All hyporheic samples were extracted from a depth of 15 cm below stream bottom. Colmation was measured quantitatively in the same depth.</p><p>Following the biotic and abiotic patterns found, three temporal stages of different hydrological conditions can be described:</p><ul><li>1) Strong floods, in February and March 2020 caused hydromorphological alterations of the river bed, leading to a decolmation of the hyporheic zone, a wash out of OM and hyporheic fauna. Due to high GW tables the vertical hydrological gradient (VHG) was positive indicating upwelling GW.</li> <li>2) In the months of Mai to August 2019 and April 2020, precipitation and stream discharge were lowest. Predominantly exfiltrating conditions were observed, while the amount of fine sediments (clay and silt) increased as well as colmation. High densities of hyporheic fauna, dominated by fine sediment dwelling taxa, were assessed.</li> <li>3) From September 2019 to January 2020 stream discharge was low. The VHG became increasingly negative, indicating downwelling SW. In accordance, colmation increased continuously, while densities of hyporheic invertebrates decreased and sediment dwellers became more dominant.</li> </ul><p>Precipitation, discharge events and GW table were found to be the driving factors for the annual dynamics of the hydrological exchange as well as for colmation, fauna and hydrochemistry. Electric conductivity seems a suitable indicator for the origin of water with high values in months of low precipitation and lower values after extensive precipitation events, respectively. Hyporheic fauna displayed a significant seasonality and the community structure was correlated with colmation and changes in the VHG.</p><p>This pronounced seasonality seems to be typical of many streams and should be considered for the monitoring of sediments and hyporheic habitats: Seasons with lower stream discharge are probably the most critical periods for sediment conditions.</p><p>We assume that the basic patterns of the dynamics observed basically reflect the natural situation in the catchment. However, the strength of surface run-off and the amount of fine sediments are mainly the result of anthropogenic activities and land use in the catchment.</p><p>These findings underline the significance of dynamical processes for the assessment and implementation of the Water Framework Directive.</p>


2018 ◽  
Author(s):  
Skuyler Herzog ◽  
◽  
Kathy Peter ◽  
Zhenyu Tian ◽  
Christopher Wu ◽  
...  
Keyword(s):  

Author(s):  
I. A. Malcolm ◽  
C. A. Middlemas ◽  
C. Soulsby ◽  
S. J. Middlemas ◽  
A. F. Youngson

2021 ◽  
Vol 598 ◽  
pp. 126283
Author(s):  
Xuehang Song ◽  
Yilin Fang ◽  
Jie Bao ◽  
Huiying Ren ◽  
Zhuoran Duan ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 481
Author(s):  
Sarah A. Morley ◽  
Linda D. Rhodes ◽  
Anne E. Baxter ◽  
Giles W. Goetz ◽  
Abigail H. Wells ◽  
...  

All cities face complex challenges managing urban stormwater while also protecting urban water bodies. Green stormwater infrastructure and process-based restoration offer alternative strategies that prioritize watershed connectivity. We report on a new urban floodplain restoration technique being tested in the City of Seattle, USA: an engineered hyporheic zone. The hyporheic zone has long been an overlooked component in floodplain restoration. Yet this subsurface area offers enormous potential for stormwater amelioration and is a critical component of healthy streams. From 2014 to 2017, we measured hyporheic temperature, nutrients, and microbial and invertebrate communities at three paired stream reaches with and without hyporheic restoration. At two of the three pairs, water temperature was significantly lower at the restored reach, while dissolved organic carbon and microbial metabolism were higher. Hyporheic invertebrate density and taxa richness were significantly higher across all three restored reaches. These are some of the first quantified responses of hyporheic biological communities to restoration. Our results complement earlier reports of enhanced hydrologic and chemical functioning of the engineered hyporheic zone. Together, this research demonstrates that incorporation of hyporheic design elements in floodplain restoration can enhance temperature moderation, habitat diversity, contaminant filtration, and the biological health of urban streams.


2021 ◽  
pp. 126158
Author(s):  
Clarissa Glaser ◽  
Sven Frei ◽  
Gudrun Massmann ◽  
Benjamin Silas Gilfedder

2021 ◽  
Author(s):  
Mirza A. T. M. Tanvir Rahman ◽  
Junjiro N. Negishi ◽  
Takumi Akasaka ◽  
Futoshi Nakamura

Sign in / Sign up

Export Citation Format

Share Document