Carbon Monoxide in Modified Atmosphere Packaging Affects Color, Shelf Life, and Microorganisms of Beef Steaks and Ground Beef

2004 ◽  
Vol 69 (1) ◽  
pp. FCT45-FCT52 ◽  
Author(s):  
M. C. HUNT ◽  
R. A. MANCINI ◽  
K. A. HACHMEISTER ◽  
D. H. KROPF ◽  
M. MERRIMAN ◽  
...  
2008 ◽  
Vol 71 (6) ◽  
pp. 1237-1243 ◽  
Author(s):  
M. TURGIS ◽  
J. HAN ◽  
J. BORSA ◽  
M. LACROIX

Selected Chinese cinnamon, Spanish oregano, and mustard essential oils (EOs) were used in combination with irradiation to evaluate their ability to eliminate pathogenic bacteria and extend the shelf life of medium-fat-content ground beef (23% fat). Shelf life was defined as the time when the total bacterial count reached 107 CFU/g. The shelf life of ground beef was determined for 28 days at 4°C after treatment with EOs. The concentrations of EOs were predetermined such that sensory properties of cooked meat were maintained: 0.025% Spanish oregano, 0.025% Chinese cinnamon, and 0.075% mustard. Ground beef samples containing EOs were then packaged under air or a modified atmosphere and irradiated at 1.5 kGy. Ground beef samples (10 g) were taken during the storage period for enumeration of total mesophilic aerobic bacteria, Escherichia coli, Salmonella, total coliforms, lactic acid bacteria, and Pseudomonas. Mustard EO was the most efficient for reducing the total mesophilic aerobic bacteria and eliminating pathogenic bacteria. Irradiation alone completely inhibited the growth of total mesophilic aerobic and pathogenic bacteria. The combination of irradiation and EOs was better for reducing lactic acid bacteria (mustard and cinnamon EOs) and Pseudomonas (oregano and mustard EOs). The best combined treatment for extending the shelf life of ground beef for up to 28 days was EO plus irradiation (1.5 kGy) and modified atmosphere packaging.


Meat Science ◽  
2016 ◽  
Vol 112 ◽  
pp. 124
Author(s):  
F.A. Ribeiro ◽  
M.A. Almeida ◽  
J.S.D.S. Pinto ◽  
K.A. Guimarães ◽  
E.S. Villa ◽  
...  

2007 ◽  
Vol 70 (4) ◽  
pp. 937-942 ◽  
Author(s):  
ANGELA LAURY ◽  
JOSEPH G. SEBRANEK

Fresh pre- and postrigor pork sausage patties were manufactured in the Iowa State University Meat Laboratory and packaged either in modified atmosphere (MAP) with 0.4% carbon monoxide (CO) and 99.6% carbon dioxide (CO2) or on foam trays overwrapped with oxygen-permeable film (OW). Packages were stored at 2 to 4°C under fluorescent lights for up to 31 days. Aerobic, anaerobic, and psychrotrophic plate counts, raw and cooked color, purge, and lipid oxidation were measured during storage. Results indicated that both pork sausage products in MAP had lower aerobic and psychrotrophic counts and less lipid oxidation throughout storage (P < 0.05). Raw color of both products in MAP was redder than the OW patties (P < 0.05), but the prerigor pork sausage in MAP benefited more from the CO atmosphere in terms of raw color than the postrigor pork sausage in MAP. Cooked color of the prerigor pork sausage in MAP was significantly redder than cooked color of the postrigor pork sausage. Both pork sausage products in MAP were also lighter (L* value) than the OW patties for raw and cooked color. Therefore, the combination of CO and CO2 in MAP was beneficial in extending the shelf life of preand postrigor fresh pork sausage by reducing aerobic and psychrotrophic microbial growth and improving oxidative stability and color, compared to conventional OW packaging. However, increased purge, increased anaerobic growth, and changes in cooking behavior were also observed for the products in MAP during storage (P < 0.05).


2008 ◽  
Vol 71 (2) ◽  
pp. 293-301 ◽  
Author(s):  
J. C. BROOKS ◽  
M. ALVARADO ◽  
T. P. STEPHENS ◽  
J. D. KELLERMEIER ◽  
A. W. TITTOR ◽  
...  

Two separate studies, one with pathogen-inoculated product and one with noninoculated product, were conducted to determine the safety and spoilage characteristics of modified atmosphere packaging (MAP) and traditional packaging of ground beef patties. Ground beef patties were allotted to five packaging treatments (i) control (foam tray with film overwrap; traditional), (ii) high-oxygen MAP (80% O2, 20% CO2), (iii) high-oxygen MAP with added rosemary extract, (iv) low-oxygen carbon monoxide MAP (0.4% CO, 30% CO2, 69.6% N2), and (v) low-oxygen carbon monoxide MAP with added rosemary extract. Beef patties were evaluated for changes over time (0, 1, 3, 5, 7, 14, and 21 days) during lighted display. Results indicated low-oxygen carbon monoxide gas flush had a stabilizing effect on meat color after the formation of carboxymyoglobin and was effective for preventing the development of surface discoloration. Consumers indicated that beef patties packaged in atmospheres containing carbon monoxide were more likely to smell fresh at 7, 14, and 21 days of display, but the majority would probably not consume these products after 14 days of display because of their odor. MAP suppressed the growth of psychrophilic aerobic bacteria when compared with control packages. Generally, control packages had significantly higher total aerobic bacteria and Lactobacillus counts than did modified atmosphere packages. In the inoculated ground beef (approximately 105 CFU/g) in MAP, Escherichia coli O157 populations ranged from 4.51 to 4.73 log CFU/g with no differences among the various packages, but the total E. coli O157:H7 in the ground beef in the control packages was significantly higher at 5.61 log CFU/g after 21 days of storage. On days 14 and 21, the total Salmonella in the ground beef in control packages was at 5.29 and 5.27 log CFU/g, respectively, which was significantly higher than counts in the modified atmosphere packages (3.99 to 4.31 log CFU/g on day 14 and 3.76 to 4.02 log CFU/g on day 21). Data from these studies indicate that MAP suppresses pathogen growth compared with controls and that spoilage characteristics developed in MAP packages.


2004 ◽  
Vol 67 (10) ◽  
pp. 2248-2254 ◽  
Author(s):  
JOSEPH M. BOSILEVAC ◽  
STEVEN D. SHACKELFORD ◽  
RICK FAHLE ◽  
TIMOTHY BIELA ◽  
MOHAMMAD KOOHMARAIE

Acidified sodium chlorite (ASC) spray was evaluated at decreased dosages and application rates to determine its efficacy for reducing bacterial contamination on boneless beef trimmings used for production of raw ground beef products while maintaining desirable consumer qualities in the finished ground beef products. Two different applications of ASC (600 ppm applied at a rate of 1.3 oz/lb and 300 ppm applied at a rate of 1 oz/lb) were used to treat boneless beef trimmings before grinding. The effect of ASC treatment on 50/50 lean beef trimmings was greater than on 90/10 trimmings. ASC at 600 ppm reduced both the aerobic plate counts (APC) and Enterobacteriaceae counts (EBC) by 2.3 log CFU/g on 50/50 trimmings, whereas treatment with 300 ppm ASC reduced APC and EBC of 50/50 trimmings by 1.1 and 0.7 log CFU/g, respectively. Ground beef formulations of 90/10 and 73/27 were produced from the treated boneless beef trim and packaged in chubs and in modified atmosphere packaging. The efficacy of ASC spray treatment to inhibit APC and EBC over the shelf life of each ground beef product was monitored. The APC and EBC in ground beef chubs were reduced by 1.0 to 1.5 log CFU/g until day 20. The APC and EBC for products in modified atmosphere packaging were reduced 1.5 to 3.0 log CFU/g throughout their shelf life. Both decreased dosages of ASC were equally effective on 90/10 lean ground beef, but the 300 ppm ASC treatment was slightly better at reducing the EBC of 73/27 ground beef. The organoleptic qualities (color, odor, and taste) of the ground beef products treated with 300 ppm ASC were found to be superior to those treated with 600 ppm ASC. Our results indicated that decreased dosages of ASC reduce contamination and lengthen the shelf life of ground beef. Furthermore, the 300 ppm ASC treatment reduced bacterial counts while maintaining desirable organoleptic ground beef qualities.


2013 ◽  
Vol 76 (1) ◽  
pp. 99-107 ◽  
Author(s):  
CAROLA GREBITUS ◽  
HELEN H. JENSEN ◽  
JUTTA ROOSEN ◽  
JOSEPH G. SEBRANEK

Consumers' perceptions and evaluations of meat quality attributes such as color and shelf life influence purchasing decisions, and these product attributes can be affected by the type of fresh meat packaging system. Modified atmosphere packaging (MAP) extends the shelf life of fresh meat and, with the inclusion of carbon monoxide (CO-MAP), achieves significant color stabilization. The objective of this study was to assess whether consumers would accept specific packaging technologies and what value consumers place on ground beef packaged under various atmospheres when their choices involved the attributes of color and shelf life. The study used nonhypothetical consumer choice experiments to determine the premiums that consumers are willing to pay for extended shelf life resulting from MAP and for the “cherry red” color in meat resulting from CO-MAP. The experimental design allowed determination of whether consumers would discount foods with MAP or CO-MAP when (i) they are given more detailed information about the technologies and (ii) they have different levels of individual knowledge and media exposure. The empirical analysis was conducted using multinomial logit models. Results indicate that consumers prefer an extension of shelf life as long as the applied technology is known and understood. Consumers had clear preferences for brighter (aerobic and CO) red color and were willing to pay $0.16/lb ($0.35/kg) for each level of change to the preferred color. More information on MAP for extending the shelf life and on CO-MAP for stabilizing color decreased consumers' willingness to pay. An increase in personal knowledge and media exposure influenced acceptance of CO-MAP negatively. The results provide quantitative measures of how packaging affects consumers' acceptance and willingness to pay for products. Such information can benefit food producers and retailers who make decisions about investing in new packaging methods.


Sign in / Sign up

Export Citation Format

Share Document