Diversity of extracellular proteases amongAeromonasdetermined by zymogram analysis

Author(s):  
J. Zacaria ◽  
A.P.L. Delamare ◽  
S.O.P. Costa ◽  
S. Echeverrigaray
Author(s):  
Renke Perduns ◽  
Joachim Volk ◽  
Melanie Plum ◽  
André Jochums ◽  
Frank Gutzki ◽  
...  

Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1559-1571 ◽  
Author(s):  
Margaret E Katz ◽  
Amir Masoumi ◽  
Stephen R Burrows ◽  
Carolyn G Shirtliff ◽  
Brian F Cheetham

Abstract The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG- mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype.


2020 ◽  
Vol 11 ◽  
Author(s):  
Puneet Kaur Randhawa ◽  
Kaylyn Scanlon ◽  
Jay Rappaport ◽  
Manish K. Gupta

Recently, we have witnessed an unprecedented increase in the number of patients suffering from respiratory tract illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 virus is a single-stranded positive-sense RNA virus with a genome size of ~29.9 kb. It is believed that the viral spike (S) protein attaches to angiotensin converting enzyme 2 cell surface receptors and, eventually, the virus gains access into the host cell with the help of intracellular/extracellular proteases or by the endosomal pathway. Once, the virus enters the host cell, it can either be degraded via autophagy or evade autophagic degradation and replicate using the virus encoded RNA dependent RNA polymerase. The virus is highly contagious and can impair the respiratory system of the host causing dyspnea, cough, fever, and tightness in the chest. This disease is also characterized by an abrupt upsurge in the levels of proinflammatory/inflammatory cytokines and chemotactic factors in a process known as cytokine storm. Certain reports have suggested that COVID-19 infection can aggravate cardiovascular complications, in fact, the individuals with underlying co-morbidities are more prone to the disease. In this review, we shall discuss the pathogenesis, clinical manifestations, potential drug candidates, the interaction between virus and autophagy, and the role of coronavirus in exaggerating cardiovascular complications.


Marine Drugs ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 4 ◽  
Author(s):  
Ribang Wu ◽  
Leilei Chen ◽  
Dan Liu ◽  
Jiafeng Huang ◽  
Jiang Zhang ◽  
...  

2000 ◽  
Vol 67 (4) ◽  
pp. 585-596 ◽  
Author(s):  
SELVARANI GOVINDASAMY-LUCEY ◽  
PRAMOD K. GOPAL ◽  
PATRICK A. SULLIVAN ◽  
CHRISTOPHER J. PILLIDGE

The autolysin, N-acetyl muramidase (AcmA), of six commercial Lactococcus lactis subsp. cremoris starter strains and eight Lc. lactis subsp. cremoris derivatives or plasmid-free strains was shown by renaturing SDS-PAGE (zymogram analysis) to be degraded by the cell envelope proteinase (lactocepin; EC 3.4.21.96) after growth of strains in milk at 30 °C for 72 h. Degradation of AcmA was less in starter strains and derivatives producing lactocepin I/III (intermediate specificity) than in strains producing lactocepin I. This supports previous observations on AcmA degradation in derivatives of the laboratory strain Lc. lactis subsp. cremoris MG1363 (Buist et al. Journal of Bacteriology180 5947–5953 1998). In contrast to the MG1363 derivatives, however, the extent of autolysis in milk of the commercial Lc. lactis subsp. cremoris starter strains in this study did not always correlate with lactocepin specificity and AcmA degradation. The distribution of autolysins within the cell envelope of Lc. lactis subsp. cremoris starter strains and derivatives harvested during growth in milk was compared by zymogram analysis. AcmA was found associated with cell membranes as well as cell walls and some cleavage of AcmA occurred independently of lactocepin activity. An AcmA product intermediate in size between precursor (46 kDa) and mature (41 kDa) forms of AcmA was clearly visible on zymograms, even in the absence of lactocepin I activity. These results show that autolysis of commercial Lc. lactis subsp. cremoris starter strains is not primarily determined by AcmA activity in relation to lactocepin specificity and that proteolytic cleavage of AcmA in vivo is not fully defined.


2018 ◽  
Vol 7 (18) ◽  
Author(s):  
Haeyoung Jeong ◽  
Da-Eun Jeong ◽  
Seung-Hwan Park ◽  
Seong Joo Kim ◽  
Soo-Keun Choi

Bacillus subtilis WB800N is a genetically engineered variant of B. subtilis 168, such that all extracellular proteases are disrupted, which enables WB800N to be widely used for the expression of secretory proteins. Here, we report the 4.2-Mb complete genome sequence of WB800N and present all of the disrupted gene structure.


Sign in / Sign up

Export Citation Format

Share Document