scholarly journals Red-shifted fluorescent proteins monitor enzymatic activity in live HT-1080 cells with fluorescence lifetime imaging microscopy (FLIM)

2012 ◽  
Vol 248 (1) ◽  
pp. 77-89 ◽  
Author(s):  
J.P. EICHORST ◽  
R.M. CLEGG ◽  
Y. WANG
2020 ◽  
Author(s):  
V. Zickus ◽  
M.-L. Wu ◽  
K. Morimoto ◽  
V. Kapitany ◽  
A. Fatima ◽  
...  

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 Megapixel resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 1000-fold improvement in processing times compared to standard least squares fitting techniques. We utilised our system to image HT1080 – human fibrosarcoma cell line as well as Convallaria. The results show promise for real-time FLIM and a viable route towards multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6 megapixels.


2016 ◽  
Vol 52 (24) ◽  
pp. 4458-4461 ◽  
Author(s):  
Hideki Itoh ◽  
Satoshi Arai ◽  
Thankiah Sudhaharan ◽  
Sung-Chan Lee ◽  
Young-Tae Chang ◽  
...  

FLIM of ER thermo yellow and non-targeted mCherry reveals the Ca2+-dependent heat production localized to SR in C2C12 myotube.


Sign in / Sign up

Export Citation Format

Share Document