Monocyte-derived dendritic cells from HCV-infected patients transduced with an adenovirus expressing NS3 are functional when stimulated with the TLR3 ligand poly(I:C)

2008 ◽  
pp. ???-???
Author(s):  
I. Echeverra ◽  
A. Zabaleta ◽  
L. Silva ◽  
N. Daz-Valds ◽  
J. I. Riezu-Boj ◽  
...  
2021 ◽  
Vol 22 (8) ◽  
pp. 3978
Author(s):  
Pavla Taborska ◽  
Dmitry Stakheev ◽  
Jirina Bartunkova ◽  
Daniel Smrz

The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.


2009 ◽  
Vol 83 (11) ◽  
pp. 5693-5707 ◽  
Author(s):  
Hua Liang ◽  
Rodney S. Russell ◽  
Nicole L. Yonkers ◽  
David McDonald ◽  
Benigno Rodriguez ◽  
...  

ABSTRACT Dendritic cells (DCs) are reported to be functionally deficient during chronic hepatitis C virus (HCV) infection. Differing results have been reported on direct effects of intact replicative-form HCV on DC function. To better understand the effect of HCV on DC function, we treated freshly purified human myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) with HCV JFH1. We found that HCV upregulated mDC maturation marker (CD83, CD86, and CD40) expression and did not inhibit Toll-like receptor 3 (TLR3) ligand [poly(I:C)]-induced mDC maturation, a finding consistent with the phenotype of DCs from HCV-infected subjects. At the same time, HCV JFH1 inhibited the ability of poly(I:C)-treated mDCs to activate naive CD4 T cells. In contrast, although there was no direct effect of virus on pDC maturation, HCV JFH1 inhibited TLR7 ligand (R848)-induced pDC CD40 expression, and this was associated with impaired ability to activate naive CD4 T cells. Parallel experiments with recombinant HCV proteins indicated HCV core protein may be responsible for a portion of the activity. Furthermore, HCV-mediated mDC maturation was dependent upon CD81-E2 interaction and, in part, TLR2. Using UV-treated HCV, we show that HCV-mediated mDC and pDC maturation is virus replication independent and, using strand specific PCR, we found no evidence for HCV replication within DCs. Because these effects of HCV on DC subset maturation and function in part recapitulate direct ex vivo analysis of DCs in chronic HCV infection, the mechanisms described here likely account for a portion of the DC subset defects observed in vivo.


2007 ◽  
Vol 81 (11) ◽  
pp. 5537-5546 ◽  
Author(s):  
Ian Gaël Rodrigue-Gervais ◽  
Loubna Jouan ◽  
Geneviève Beaulé ◽  
Dominike Sauvé ◽  
Julie Bruneau ◽  
...  

ABSTRACT The role of peripheral dendritic cells (DCs) in hepatitis C virus (HCV) infection is unclear. To determine if persistent infection exerts an inhibitory pressure on HCV-specific innate responses, we analyzed DC function in blood through quantification of cell-associated HCV RNA levels in conjunction with multiparametric flow cytometry analysis of pathogen recognition receptor-induced cytokine expression. Independently of the serum viral load, fluorescence-activated cell sorter-purified total DCs had a wide range of cell-associated HCV genomic RNA copy numbers (mean log10, 5.0 per 106 cells; range, 4.3 to 5.8). Here we report that for viremic patients with high viral loads in their total DCs, the myeloid DC (MDC) subset displayed impaired expression of interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α) but normal IL-6 or chemokine CCL3 expression in response to poly(I:C) and lipopolysaccharide (LPS). IL-6-expressing cells from this subgroup of viremic patients demonstrated a significant increase (sixfold more) in TNF-α− IL-12− cell frequency compared to healthy donors (mean, 38.8% versus 6.5%; P < 0.0001), indicating a functional defect in a subpopulation of cytokine-producing MDCs (∼6% of MDCs). Attenuation of poly(I:C) and LPS innate sensing was HCV RNA density dependent and did not correlate with viremia or deficits in circulating MDC frequencies in HCV-infected patients. Monocytes from these patients were functionally intact, responding normally on a per-cell basis following stimulation, independent of cell-associated HCV RNA levels. Taken together, these data indicate that detection of HCV genomic RNA in DCs and loss of function in the danger signal responsiveness of a small proportion of DCs in vivo are interrelated rather than independent phenomena.


2014 ◽  
Vol 2 (10) ◽  
pp. 1000-1010 ◽  
Author(s):  
Shane A. Curran ◽  
Emanuela Romano ◽  
Michael G. Kennedy ◽  
Katharine C. Hsu ◽  
James W. Young
Keyword(s):  
Nk Cell ◽  

2009 ◽  
Vol 182 (5) ◽  
pp. 2766-2776 ◽  
Author(s):  
Davor Frleta ◽  
Chun I. Yu ◽  
Eynav Klechevsky ◽  
Anne-Laure Flamar ◽  
Gerard Zurawski ◽  
...  

2012 ◽  
Vol 51 (2) ◽  
pp. 150-158 ◽  
Author(s):  
Lin Sun ◽  
Chunyan Hua ◽  
Yonghong Yang ◽  
Huan Dou ◽  
Erguang Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document