cd40 expression
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 16)

H-INDEX

31
(FIVE YEARS 1)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1545-1545
Author(s):  
Karoline Kielbassa ◽  
Marco Haselager ◽  
Danique Bax ◽  
Julie Dubois ◽  
Mark-David Levin ◽  
...  

Abstract Background: For proliferation and survival, chronic lymphocytic leukemia (CLL) cells depend on interactions with cells and soluble factors present in the tumor microenvironment (TME). These interactions also increase expression of B-cell leukemia/lymphoma-2 (Bcl-2) proteins, including Bcl-XL, Mcl-1 and Bfl-1, thereby reducing drug sensitivity. In the VISION HOVON141 clinical trial, patients with relapsed or refractory CLL are treated with 2 cycles of Bruton tyrosine kinase inhibitor ibrutinib (IBR) lead-in followed by 13 cycles of IBR + Bcl-2 inhibitor venetoclax (VEN) combination before randomization. The combination of IBR + VEN may have synergistic anti-tumor effects, since IBR forces CLL cells from lymph node (LN) to the blood (PB) where they become fully dependent on Bcl-2, and succumb to VEN. To support a mechanistic basis for this premise, we investigated changes in expression of Bcl-2 proteins, effects of TME-mimicking signals, and venetoclax sensitivity before/after 2 months IBR treatment. Results: At baseline, lymph node emigrant cells (CXCR4dim/CD5high) have higher Bfl-1 expression, in addition to earlier reported Bcl-XL and Mcl-1 expression than cells immigrating back to the lymph node (CXCR4high/CD5dim)(Haselager et al., 2020). After 2 months of IBR treatment a clear reduction in all four pro-survival proteins was observed (N=17 p<0.001). Despite these changes, VEN sensitivity was not different in unstimulated PB CLL cells obtained at baseline versus at 2 months of IBR treatment (N=8; IC50=0.001µM). In contrast, CD40 stimulated CLL cells obtained at baseline are fully resistant to VEN (IC50>10µM), but unexectedly retained partial sensitivity to venetoclax after IBR treatment (IC50=0.05 µM, p-value <0.0001; Figure 1A). This suggested reduced CD40 signalling capacity and was accompanied by reduced ability to upregulate Bcl-XL, Mcl-1, and Bfl-1 expression. Indeed, cell surface expression, as well as level of CD40 activation as measured by CD95 induction, was clearly reduced after 2 months IBR. Importantly, these effects occurred in vivo, as IBR did not directly affect CD40 signaling in vitro. These data imply that under IBR treatment, when cells cannot (re-)enter LN sites, a factor is lacking that maintains or induces CD40 expression. In search of stimuli that can augment CD40 signaling capacity, it was found that BCR stimulation had no effect on CD40 expression. In contrast, TLR9 stimulation via CpG led to increased CD40 expression in CLL cells (N=7, p-value <0.0001)(Figure 1B). These findings align well with recent data which indicate a role for TLR9 signalling in vivo by unmethylated mitochondrial DNA in CLL (Kennedy et al., 2021). Taken together, these data provide a mechanistic explanation, by which a triad of signaling pathways not only involving BCR but also CD40 and TLR9 is interrupted by IBR (Figure 1C). Discussion/conclusion: IBR treatment broadly affects Bcl-2 family protein expression and CD40 signaling in vivo. The combined data indicate a novel aspect of IBR efficacy, namely its capacity to interrupt TLR9-induced CD40 upregulation, which normally primes CLL cells in the LN environment for drug resistance. This also suggests that drugs that inhibit TLR9 signaling may synergize with IBR. References Haselager, M. V., et al (2020). Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood, 136(25), 2918 Kennedy, E., et al (2021). TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood, 137(22), 3064 Figure 1 Figure 1. Disclosures Levin: Roche, Janssen, Abbvie: Other: Travel Expenses, Ad-Board. Westerweel: Novartis: Research Funding; Incyte: Consultancy; BMS / Celgene: Consultancy; Pfizer: Consultancy. Niemann: CSL Behring, Genmab, Takeda, Octapharma: Consultancy; Novo Nordisk Foundation: Research Funding; Abbvie, AstraZeneca, Janssen: Consultancy, Research Funding.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi203-vi203
Author(s):  
Fan Yang ◽  
Steven Brem ◽  
Yi Fan

Abstract Glioblastoma (GBM) is refractory to current T cell-based immunotherapies such as checkpoint blockade. GBM is characterized by extensive infiltration of immunosuppressive macrophages that contribute to the treatment resistance. Here we develop a dual-targeting strategy to synergistically activate tumor-associated macrophages (Mφs), which efficiently overcomes GBM resistance to therapeutic blockade of the PD1 and CTLA4 checkpoints. Consistent with a pro-tumor role of IL-6 in alternative Mφ polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mφs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mφs. Combination of IL-6 inhibition with CD40 stimulation reverses Mφ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models. Notably, this antibody cocktail-based combination immunotherapy with checkpoint blockade almost doubles animal survival in the genetically engineered mouse GBM model and induces complete tumor regression in the GL261 model. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting therapeutic opportunities for GBM.


Author(s):  
Paul Hehenkamp ◽  
Maximilian Hoffmann ◽  
Sebastian Kummer ◽  
Christina Reinauer ◽  
Carsten Döing ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esther Pototskiy ◽  
Katherine Vinokuroff ◽  
Andrew Ojeda ◽  
C. Kendall Major ◽  
Deepak Sharma ◽  
...  

AbstractUnregulated neuro-inflammation mediates seizures in temporal lobe epilepsy (TLE). Our aim was to determine the effect of CD40–CD40L activation in experimental seizures. CD40 deficient mice (CD40KO) and control mice (wild type, WT) received pentenyltetrazole (PTZ) or pilocarpine to evaluate seizures and status epilepticus (SE) respectively. In mice, anti-CD40L antibody was administered intranasally before PTZ. Brain samples from human TLE and post-seizure mice were processed to determine CD40–CD40L expression using histological and molecular techniques. CD40 expression was higher in hippocampus from human TLE and in cortical neurons and hippocampal neural terminals after experimental seizures. CD40–CD40L levels increased after seizures in the hippocampus and in the cortex. After SE, CD40L/CD40 levels increased in cortex and showed an upward trend in the hippocampus. CD40KO mice demonstrated reduction in seizure severity and in latency compared to WT mice. Anti-CD40L antibody limited seizure susceptibility and seizure severity. CD40L–CD40 interaction can serve as a target for an immuno-therapy for TLE.


2021 ◽  
Vol 20 (4) ◽  
pp. 796-800
Author(s):  
Linda Rosita ◽  
Erlina Marfianti ◽  
Ninda Devita ◽  
Adika Zhulhi Arjana

Background: Coronary artery disease (CAD) can occur due to atherosclerosis in coronary arteries. Platelet agreement plays an important role in the pathophysiology of CAD. CD40L is a surface antigen on activated platelets. CD40L will bind to CD40 which is expressed by macrophages and endothelials then this activation results in reduced thickness and stability of atherosclerotic plaque and then thrombus appears. Thrombus ultimately inhibits blood flow to the coronary arteries. Proper measurement of these activities can describe the occurrence of CADs driven by platelets. Objectives: Measuring the avidity of CD40L-CD40 interactions so that the relationship between CD40L activity and CAD events can be seen. Materials and Methods: This research is non-experimental in nature and uses Case control designs. The subjects of the study were CAD patients at RSUD Dr. Soedirman Kebumen. Patients who met the inclusion and exclusion criteria were then examined and healthy patients were matched and CAD patients matched. The subject’s blood is then drawn and sent to Clinical Pathology Laboratory, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada. Blood samples were then examined using flow cytometry to determine CD40L levels. The results obtained were then analyzed by logistic regression test with Medcalc software. Results and discussion: Twenty-six subjects participated in this study, with 13 subjects were CAD patients and 13 healthy control subjects.The percentage of platelets expressing CD62P+ CD40L+ in the CAD group was higher than in the control group (p = 0.0015). Statistical analysis with T test showed that there were significant differences in CD40-expressing platelets between the CAD group and the control group (p = 0.0029).The study conclude that the avidity of CD40L-CD40 interactions as indicated by CD40 expression is related to CAD events. CD40 expression was higher in subjects with CAD compared to controls. Bangladesh Journal of Medical Science Vol.20(4) 2021 p.796-800


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan Yang ◽  
Zhenqiang He ◽  
Hao Duan ◽  
Duo Zhang ◽  
Juehui Li ◽  
...  

AbstractImmunologically-cold tumors including glioblastoma (GBM) are refractory to checkpoint blockade therapy, largely due to extensive infiltration of immunosuppressive macrophages (Mϕs). Consistent with a pro-tumor role of IL-6 in alternative Mϕs polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mϕs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mϕs. Combination of IL-6 inhibition with CD40 stimulation reverses Mϕ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models, particularly inducing complete regression of GL261 tumors after checkpoint blockade. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting opportunities for GBM and other solid tumors.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Chi Yan ◽  
Nabil Saleh ◽  
Jinming Yang ◽  
Caroline A. Nebhan ◽  
Anna E. Vilgelm ◽  
...  

Abstract Background While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. Methods Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. Results RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. Conclusions Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. Trial registration NCT01205815 (Sept 17, 2010). Graphical abstract


2020 ◽  
Vol 16 (12) ◽  
pp. e1009136
Author(s):  
Md. Naushad Akhtar ◽  
Manish Mishra ◽  
Vinod Yadav ◽  
Manisha Yadav ◽  
Ravindra Gujar ◽  
...  

The level of CD40 expression on dendritic cells (DCs) plays a decisive role in disease protection during Leishmania donovani (LD) infection. However, current understanding of the molecular regulation of CD40 expression remains elusive. Using molecular, cellular and functional approaches, we identified a role for Runx1 and Runx3 transcription factors in the regulation of CD40 expression in DCs. In response to lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα) or antileishmanial drug sodium antimony gluconate (SAG), both Runx1 and Runx3 translocated to the nucleus, bound to the CD40 promoter and upregulated CD40 expression on DCs. These activities of Runx proteins were mediated by the upstream phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Notably, LD infection attenuated LPS- or TNFα-induced CD40 expression in DCs by inhibiting PI3K-Akt-Runx axis via protein tyrosine phosphatase SHP-1. In contrast, CD40 expression induced by SAG was unaffected by LD infection, as SAG by blocking LD-induced SHP-1 activation potentiated PI3K-Akt signaling to drive Runx-mediated CD40 upregulation. Adoptive transfer experiments further showed that Runx1 and Runx3 play a pivotal role in eliciting antileishmanial immune response of SAG-treated DCs in vivo by promoting CD40-mediated type-1 T cell responses. Importantly, antimony-resistant LD suppressed SAG-induced CD40 upregulation on DCs by blocking the PI3K-Akt-Runx pathway through sustained SHP-1 activation. These findings unveil an immunoregulatory role for Runx proteins during LD infection.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1526
Author(s):  
Meijuan Zou ◽  
Xiaoyu Zhang ◽  
Danli Jiang ◽  
Yihan Zhao ◽  
Ting Wu ◽  
...  

Previously, using FREP-MS, we identified a protein complex including eight proteins that specifically bind to the functional SNP (fSNP) rs6032664 at a CD40 locus associated with autoimmune diseases. Among these eight proteins, four are ribosomal proteins RPL26, RPL4, RPL8, and RPS9 that normally make up the ribosomal subunits involved in the cellular process of protein translation. So far, no publication has shown these ribosomal proteins function as transcriptional regulators. In this work, we demonstrate that four ribosomal proteins: RPL26, RPL4, RPL8, and RPS9 are bona fide CD40 transcriptional regulators via binding to rs6032664. In addition, we show that suppression of CD40 expression by RPL26 RNAi knockdown inactivates NF-κB p65 by dephosphorylation via NF-κB signaling pathway in fibroblast-like synoviocytes (FLS), which further reduces the transcription of disease-associated risk genes such as STAT4, CD86, TRAF1 and ICAM1 as the direct targets of NF-κB p65. Based on these findings, a disease-associated risk gene transcriptional regulation network (TRN) is generated, in which decreased expression of, at least, RPL26 results in the downregulation of risk genes: STAT4, CD86, TRAF1 and ICAM1, as well as the two proinflammatory cytokines: IL1β and IL6 via CD40-induced NF-κB signaling. We believe that further characterization of this disease-associated TRN in the CD40-induced NF-κB signaling by identifying both the upstream and downstream regulators will potentially enable us to identify the best targets for drug development.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Zhenghao Chen ◽  
Gaspard Cretenet ◽  
Valeria Carnazzo ◽  
Gerritje J. W. van der Windt ◽  
Arnon P. Kater ◽  
...  

Alterations in expression of specifically BCL-XL and MCL-1 dictate sensitivity of CLL cells to the Bcl-2 specific inhibitor venetoclax (VEN). We and others have shown upregulation of these anti-apoptotic proteins by interaction of CLL cells with CD4+ T helper cells within their lymph node microenvironment (LN-ME) mediated by CD40 signalling. We also reported significant metabolic changes of LN-ME activated CLL cells but whether metabolic alterations can be linked to VEN resistance remains unclear. As VEN is increasingly used in early stages of CLL, better understanding and tools to circumvent VEN resistance are highly needed. We aim to reveal the metabolic adaption of CLL to CD40 signalling in connection with VEN resistance. After in vitro CD40 signalling stimulation of peripheral blood (PB) CLL cells, mitochondrial mass and glucose uptake were measured by flow cytometry, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured on Seahorse XF Analyser. The result demonstrated that CD40 stimulation enhances both oxidative phosphorylation (OXPHOS) and glycolysis. This was also confirmed by microarray and metabolomics analyses, as genes and metabolites involved in these two metabolic pathways are significantly upregulated by CD40 stimulation. To find out whether these pathways are linked to VEN resistance, PB CLL cells were treated with OXPHOS or glycolysis inhibitors during CD40 stimulation. Remarkably, OXPHOS inhibition by electron transport chain (ETC) inhibitors (rotenone, antimycin A and oligomycin) counteracted strongly for VEN resistance, while glycolysis inhibition by 2-Deoxy-D-glucose (2DG) did not. The three ETC inhibitors also attenuated CLL activation, ATP production and NAD levels. Interestingly, complex II inhibition of the ETC (TTFA and DMM) did not affect VEN resistance. Regarding BCL-2 family members induced by CD40 ligation, both MCL-1 and BCL-XL were downregulated by these ETC inhibitors. In addition, OXPHOS inhibition strongly elevates glycolysis, and vice versa, which illustrates a strong metabolic plasticity of CLL cells. To further investigate the cross-talk between CD40 signalling, VEN resistance and mitochondrial metabolism, the three main fuels of the TCA cycle were inhibited: pyruvate (by UK5099), glutamine (by DON) and fatty acids (by etomoxir). Even though the OCR and ECAR were slightly decreased by (combinations of) these fuel inhibitors, neither CD40 signalling nor VEN sensitivity was affected. Next, we inhibited PI3K by idelalisib, BTK by ibrutinib and mTOR by rapamycin, which are three downstream targets of CD40 signalling. The results showed that only rapamycin inhibited CD40 activation and metabolic activities, and none of the three inhibitors counteracts VEN resistance. Lastly, we investigated CD40 splicing and overall expression. Interestingly, CD40 stimulation has a huge impact on CD40 expression itself, and these changes were blocked by ETC inhibition. These data indicate that ETC inhibition affects CD40 signals to counteract VEN resistance, by directly affecting the expression of CD40 protein on the cell membrane. In conclusion, after CD40 stimulation, CLL cells become metabolically activated and highly flexible in the use of mitochondrial fuels. The enhanced OXPHOS but not glycolysis contributes to VEN resistance, while ETC inhibition reverses CLL VEN resistance by directly suppressing CD40 expression on CLL. These findings link CLL metabolism directly to CD40 transcription and signalling, which may contribute to clinical VEN resistance. Disclosures van der Windt: genmab: Current Employment. Kater:Abbvie: Research Funding; Roche: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Genentech: Research Funding. Eldering:Genentech: Research Funding; Celgene: Research Funding; Janssen: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document