scholarly journals Phenotypic and Functional Activation of Hyporesponsive KIRnegNKG2Aneg Human NK-Cell Precursors Requires IL12p70 Provided by Poly(I:C)-Matured Monocyte-Derived Dendritic Cells

2014 ◽  
Vol 2 (10) ◽  
pp. 1000-1010 ◽  
Author(s):  
Shane A. Curran ◽  
Emanuela Romano ◽  
Michael G. Kennedy ◽  
Katharine C. Hsu ◽  
James W. Young
Keyword(s):  
Nk Cell ◽  
Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2030-2036 ◽  
Author(s):  
Daniela Pende ◽  
Roberta Castriconi ◽  
Paola Romagnani ◽  
Grazia Maria Spaggiari ◽  
Stefania Marcenaro ◽  
...  

In this study, we demonstrate the involvement of DNAM-1-triggering receptor and its ligands, poliovirus receptor (PVR) and Nectin-2, in natural killer (NK) cell-mediated lysis of dendritic cells (DCs). The surface expression of both ligands was up-regulated in DCs as compared to monocytes. It reached maximal densities after DC maturation induced by different stimuli including lipopolysaccharide (LPS), poly I:C, flagellin, and CD40L. Both immunohistochemical analysis and confocal microscopy revealed expression of DNAM-1 ligands by DCs in lymph nodes in which they were localized in the parafollicular T-cell region and surrounded the high endothelial venules. Remarkably, in cytolytic assays, DNAM-1 cooperated with NKp30 in the NK-mediated killing of both immature and mature DCs and the degree of contribution of DNAM-1 appeared to correlate with the surface densities of its specific ligands PVR and Nectin-2.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4896-4896
Author(s):  
Deok-Hwan Yang ◽  
Bo-Hwa Choi ◽  
Hyun-Kyu Kang ◽  
Sang-Ki Kim ◽  
Yeo-Kyeoung Kim ◽  
...  

Abstract For the therapeutic DC-based immunotherapy, peripheral blood derived-monocytes are cultured with the presence of exogenous GM-CSF and IL-4 by in vitro amplification. However, the different cells of the innate and adaptive immune system interact with each other and affect the activation and maturation of DCs for subsequent T-cell priming in vivo. We investigated what kind way of cultivation was more effective for the induction of mature DCs (mDCs) in vitro, compared the coculture with invariant NK cells and iDCs under the stimulatory molecules to the coculture with iDCs added to the activated NK cells stimulated by same molecules. Experimental Methods: To evaluate the NK-cell-mediated DC maturation, we divided two different combinations of the coculture of NK cells and iDCs. In the activated NK-cell-mediated DC maturation, isolated CD3-CD56+ NK cells were activated by IL-2 alone, combined IL-2 with TLR3 agonist (poly I:C) and combined IL-2 with TLR3 agonist and IFN-α. These activated NK cells were cocultured with iDCs and were differentiated into mDC. In the invariant NK-cell-mediated DC maturation, isolated CD3−CD56+ NK cells were cocultured with iDC, and then, the invariant NK cells and iDCs were stimulated simultaneously by same stimulatory methods. After harvesting the mDCs and their supernatants, the phenotype and functional capacities of mDCs were analyzed and IL-12p40 productions of mDCs were estimated by immunoassay. Results: The expressions of several molecules on DCs and IL-12p40 productions by DCs were significantly higher under the stimulation of IL-2, TLR3 agonist and IFN-α than IL-2 alone or combined with IL-2 and TLR3 agonist in the invariant NK-cell-mediated DC maturation. However, the DC phenotypes and IL-12p40 productions in the activated NK-cell-mediated DC maturation did not show any differences to the same stimulatory methods. When comparing the functional capacities and IL-12p40 productions according to the way of the activated NK-cell-mediated and invariant NK-cell-mediated DC maturation, the functional capacities of DCs from the invariant NK-cell-mediated maturation were significantly higher than those of DC from the activated NK-cell-mediated maturation with the stimulation of IL-2, TLR3 agonist, and IFN-α. IL-12p40 productions were more improved from the invariant NK-cell-mediated maturation than the activated NK-cell-mediated maturation. Conclusions: The invariant NK cells can promote the generation of DCs through the coculture with iDCs under the stimulation of IL-2, TLR3 agonist and IFN-α. However, the activated NK cells did not enhance the DC functions. This study emphasized the potential for manipulating the interaction between DC and NK cells in the generation of mDCs. Figure Figure Figure Figure


2021 ◽  
Vol 22 (8) ◽  
pp. 3978
Author(s):  
Pavla Taborska ◽  
Dmitry Stakheev ◽  
Jirina Bartunkova ◽  
Daniel Smrz

The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.


Blood ◽  
2012 ◽  
Vol 119 (19) ◽  
pp. 4349-4357 ◽  
Author(s):  
Fanny Guimont-Desrochers ◽  
Geneviève Boucher ◽  
Zhongjun Dong ◽  
Martine Dupuis ◽  
André Veillette ◽  
...  

Abstract The cell lineage origin of IFN-producing killer dendritic cells (IKDCs), which exhibit prominent antitumoral activity, has been subject to debate. Although IKDCs were first described as a cell type exhibiting both plasmacytoid DC and natural killer (NK) cell properties, the current view reflects that IKDCs merely represent activated NK cells expressing B220, which were thus renamed B220+ NK cells. Herein, we further investigate the lineage relation of B220+ NK cells with regard to other NK-cell subsets. We surprisingly find that, after adoptive transfer, B220− NK cells did not acquire B220 expression, even in the presence of potent activating stimuli. These findings strongly argue against the concept that B220+ NK cells are activated NK cells. Moreover, we unequivocally show that B220+ NK cells are highly proliferative and differentiate into mature NK cells after in vivo adoptive transfer. Additional phenotypic, functional, and transcriptional characterizations further define B220+ NK cells as immediate precursors to mature NK cells. The characterization of these novel attributes to B220+ NK cells will guide the identification of their ortholog in humans, contributing to the design of potent cancer immunotherapies.


2016 ◽  
Vol 197 (3) ◽  
pp. 795-806 ◽  
Author(s):  
Caterina Lapenta ◽  
Simona Donati ◽  
Francesca Spadaro ◽  
Paolo Castaldo ◽  
Filippo Belardelli ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2858-2866 ◽  
Author(s):  
Yanmei Han ◽  
Minghui Zhang ◽  
Nan Li ◽  
Taoyong Chen ◽  
Yi Zhang ◽  
...  

Abstract Natural killer (NK) cell inhibitory receptors play important roles in the regulation of target susceptibility to natural killing. Here, we report the molecular cloning and functional characterization of a novel NK cell receptor, KLRL1, from human and mouse dendritic cells. KLRL1 is a type II transmembrane protein with an immunoreceptor tyrosine-based inhibitory motif and a C-type lectinlike domain. The KLRL1 gene is located in the central region of the NK gene complex in both humans and mice, on human chromosome 12p13 and mouse chromosome 6F3, adjacent to the other KLR genes. KLRL1 is preferentially expressed in lymphoid tissues and immune cells, including NK cells, T cells, dendritic cells, and monocytes or macrophages. Western blot and fluorescence confocal microscopy analyses indicated that KLRL1 is a membrane-associated glycoprotein, which forms a heterodimer with an as yet unidentified partner. Human and mouse KLRL1 are both predicted to contain putative immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoprecipitation experiments demonstrated that KLRL1 associates with the tyrosine phosphatases SHP-1 (SH2-domain-containing protein tyrosine phosphatase 1) and SHP-2. Consistent with its potential inhibitory function, pretreatment of target cells with human KLRL1-Fc fusion protein enhances NK-mediated cytotoxicity. Taken together, our results demonstrate that KLRL1 belongs to the KLR family and is a novel inhibitory NK cell receptor.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3098-3098
Author(s):  
Arghya Ray ◽  
Yan Song ◽  
Ting DU ◽  
Dharminder Chauhan ◽  
Kenneth C. Anderson

Introduction Although proteasome inhibitor (PI) based combination therapies achieve remarkable responses multiple myeloma (MM), emergence of PI resistance is common. The mechanism(s) of PI-resistance include tumor-intrinsic factors such as mutations of the 20S proteasomal subunits, and/or tumor-extrinsic cellular components in the BM microenvironment. Interactions of BM accessory cells, immune effector cells, and tumor cells confer both drug-resistance and immune suppression in MM. For example, we showed that interactions of MM plasmacytoid dendritic cells (pDCs) with MM cells and with T/NK cells both confer immune suppression via immune checkpoints, as well as trigger MM cell growth by inducing secretion of MM cell growth factors. We recently reported that targeting proteasome-associated ubiquitin receptor Rpn13 triggers cytotoxicity and overcomes tumor-intrinsic PI-resistance in MM (Song et al, Leukemia 2016;30:1877). Here we utilized our co-culture models of patient pDCs, T cells, NK cells, and autologous MM cells to characterize the immune sequelae of Rpn13 inhibition. Methods Analysis of pDCs activation Purified patient-pDCs (n =7) were treated with Rpn13 inhibitor RA190 (0.05 µM) for 24h, followed by multicolor staining using fluorophore-conjugated Abs against pDC activation/maturation markers CD80, CD83, and CD86. Transient transfections Purified MM patient pDCs were transfected with Rpn13-siRNA using TransIT-X2 transfection Kit,and analyzed for alterations in maturation markers. CTL/NK activity assays Purified MM-BM CD8+ T- or NK-cells (n = 8) were co-cultured with autologous BM-pDCs (pDC:T/NK; 1:10 ratio) for 3 days, in the presence or absence of Rpn13 inhibitor RA190 (100 nM). After washing, cells were cultured for 24h with autologous MM cells pre-stained with CellTracker/CellTrace Violet (10 T/NK:1 MM), followed by 7-AAD staining and quantification of CTL-or NK cell-mediated MM cell lysis by FACS. Results 1) RA190 triggers significant upregulation of maturation markers CD80, CD83, and CD86 on MM-pDCs (fold change vs untreated: CD80: 1.2; p = 0.007; CD83: 2.15; p = 0.006; CD86: 1.4; p = 0.003). In contrast, bortezomib-treated pDCs showed no significant upregulation of these markers. 2) Similar to pharmacological inhibition of Rpn13 with RA190, Rpn13-siRNA increased CD80 (1.76-fold), CD83 (3.12-fold), and CD86 (2.28-fold) expression on MM pDCs (p<0.01). Of note, both RA190 and bortezomib block protein degradation via proteasome, but only RA190 activates pDCs. 3) RA190 treatment increases pDC-induced MM-specific CD8+ CTL activity, as well as NK cell-mediated cytolytic activity against autologous tumor cells, evidenced by decreased viable patient MM cells. 4) Treatment of MM-pDCs with RA190 increases expression of calnexin, a molecular chaperone protein of endoplasmic reticulum which regulates immune co-stimulatory molecules, immune-regulatory signaling, and restores the ability of pDCs to induce proliferation of MM-specific CTLs or NK cells. These findings were also confirmed using pDC cell line CAL-1. Conclusions Our prior findings showed that inhibition of UbR Rpn13 overcomes intrinsic PI-resistance in MM cells. Here we show that targeting Rpn13 also triggers anti-MM immune responses. Rpn13 blockade therefore represents a novel therapeutic approach to overcome both PI-resistance and immune suppression in MM. Disclosures Chauhan: C4 Therapeutics.: Equity Ownership; Stemline Therapeutics: Consultancy. Anderson:Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Sanofi-Aventis: Other: Advisory Board.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Vivian Vasconcelos Costa ◽  
Weijian Ye ◽  
Qingfeng Chen ◽  
Mauro Martins Teixeira ◽  
Peter Preiser ◽  
...  

ABSTRACT Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection.


2009 ◽  
Vol 83 (11) ◽  
pp. 5693-5707 ◽  
Author(s):  
Hua Liang ◽  
Rodney S. Russell ◽  
Nicole L. Yonkers ◽  
David McDonald ◽  
Benigno Rodriguez ◽  
...  

ABSTRACT Dendritic cells (DCs) are reported to be functionally deficient during chronic hepatitis C virus (HCV) infection. Differing results have been reported on direct effects of intact replicative-form HCV on DC function. To better understand the effect of HCV on DC function, we treated freshly purified human myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) with HCV JFH1. We found that HCV upregulated mDC maturation marker (CD83, CD86, and CD40) expression and did not inhibit Toll-like receptor 3 (TLR3) ligand [poly(I:C)]-induced mDC maturation, a finding consistent with the phenotype of DCs from HCV-infected subjects. At the same time, HCV JFH1 inhibited the ability of poly(I:C)-treated mDCs to activate naive CD4 T cells. In contrast, although there was no direct effect of virus on pDC maturation, HCV JFH1 inhibited TLR7 ligand (R848)-induced pDC CD40 expression, and this was associated with impaired ability to activate naive CD4 T cells. Parallel experiments with recombinant HCV proteins indicated HCV core protein may be responsible for a portion of the activity. Furthermore, HCV-mediated mDC maturation was dependent upon CD81-E2 interaction and, in part, TLR2. Using UV-treated HCV, we show that HCV-mediated mDC and pDC maturation is virus replication independent and, using strand specific PCR, we found no evidence for HCV replication within DCs. Because these effects of HCV on DC subset maturation and function in part recapitulate direct ex vivo analysis of DCs in chronic HCV infection, the mechanisms described here likely account for a portion of the DC subset defects observed in vivo.


Sign in / Sign up

Export Citation Format

Share Document