Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits

2012 ◽  
Vol 22 (3) ◽  
pp. 602-619 ◽  
Author(s):  
JOUNI KVIST ◽  
CHRISTOPHER W. WHEAT ◽  
EVELIINA KALLIONIEMI ◽  
MARJO SAASTAMOINEN ◽  
ILKKA HANSKI ◽  
...  
2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


Cell ◽  
2014 ◽  
Vol 156 (4) ◽  
pp. 759-770 ◽  
Author(s):  
Emma Watson ◽  
Lesley T. MacNeil ◽  
Ashlyn D. Ritter ◽  
L. Safak Yilmaz ◽  
Adam P. Rosebrock ◽  
...  

2021 ◽  
Author(s):  
Janos Ujszegi ◽  
Reka Bertalan ◽  
Nikolett Ujhegyi ◽  
Viktoria Verebelyi ◽  
Edina Nemeshazi ◽  
...  

Extreme temperatures during heat waves can induce mass-mortality events, but can also exert sublethal negative effects by compromising life-history traits and derailing sexual development. Ectothermic animals may, however, also benefit from increased temperatures via enhanced physiological performance and the suppression of cold-adapted pathogens. Therefore, it is crucial to address how the intensity and timing of naturally occurring or human-induced heat waves affect life-history traits and sexual development in amphibians, to predict future effects of climate change and to minimise risks arising from the application of elevated temperature in disease mitigation. We raised agile frog (Rana dalmatina) and common toad (Bufo bufo) tadpoles at 19 °C and exposed them to a simulated heat wave of 28 or 30 °C for six days during one of three ontogenetic periods (early, mid or late larval development). In agile frogs, exposure to 30 °C during early larval development increased mortality. Regardless of timing, all heat-treatments delayed metamorphosis, and exposure to 30 °C decreased body mass at metamorphosis. Furthermore, exposure to 30 °C during any period and to 28 °C late in development caused female-to-male sex reversal, skewing sex ratios strongly towards males. In common toads, high temperature only slightly decreased survival and did not influence phenotypic sex ratio, while it reduced metamorph mass and length of larval development. Juvenile body mass measured two months after metamorphosis was not adversely affected by temperature treatments in either species. Our results indicate that heat waves may have devastating effects on amphibian populations, and the severity of these negative consequences, and sensitivity can vary greatly between species and with the timing and intensity of heat. Finally, thermal treatments against cold-adapted pathogens have to be executed with caution, taking into account the thermo-sensitivity of the species and the life stage of animals to be treated.


Cell ◽  
2014 ◽  
Vol 156 (6) ◽  
pp. 1336-1337 ◽  
Author(s):  
Emma Watson ◽  
Lesley T. MacNeil ◽  
Ashlyn D. Ritter ◽  
L. Safak Yilmaz ◽  
Adam P. Rosebrock ◽  
...  

2020 ◽  
Vol 168 ◽  
pp. 115165 ◽  
Author(s):  
Hélène Arambourou ◽  
Lola Llorente ◽  
Iñigo Moreno-Ocio ◽  
Óscar Herrero ◽  
Carlos Barata ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Matteo Antoine Negroni ◽  
Francisca H. I. D. Segers ◽  
Fanny Vogelweith ◽  
Susanne Foitzik

Abstract Background The gut microbiome can influence life history traits associated with host fitness such as fecundity and longevity. In most organisms, these two life history traits are traded-off, while they are positively linked in social insects. In ants, highly fecund queens can live for decades, while their non-reproducing workers exhibit much shorter lifespans. Yet, when fertility is induced in workers by death or removal of the queen, worker lifespan can increase. It is unclear how this positive link between fecundity and longevity is achieved and what role the gut microbiome and the immune system play in this. To gain insights into the molecular regulation of lifespan in social insects, we investigated fat body gene expression and gut microbiome composition in workers of the ant Temnothorax rugatulus in response to an experimental induction of fertility and an immune challenge. Results Fertile workers upregulated several molecular repair mechanisms, which could explain their extended lifespan. The immune challenge altered the expression of several thousand genes in the fat body, including many immune genes, and, interestingly, this transcriptomic response depended on worker fertility. For example, only fertile, immune-challenged workers upregulated genes involved in the synthesis of alpha-ketoglutarate, an immune system regulator, which extends the lifespan in Caenorhabditis elegans by down-regulating the TOR pathway and reducing oxidant production. Additionally, we observed a dramatic loss in bacterial diversity in the guts of the ants within a day of the immune challenge. Yet, bacterial density did not change, so that the gut microbiomes of many immune challenged workers consisted of only a single or a few bacterial strains. Moreover, the expression of immune genes was linked to the gut microbiome composition, suggesting that the ant host can regulate the microbiome in its gut. Conclusions Immune system flare-ups can have negative consequence on gut microbiome diversity, pointing to a previously underrated cost of immunity. Moreover, our results provide important insights into shifts in the molecular regulation of fertility and longevity associated with insect sociality.


Author(s):  
Olle Lindestad ◽  
Inger Aalberg Haugen ◽  
Karl Gotthard

Many insects possess the plastic ability to either develop directly to adulthood, or enter diapause and postpone reproduction until the next year, depending on environmental cues (primarily photoperiod) that signal the amount of time remaining until the end of the growth season. These two developmental pathways often differ in co-adapted life history traits, e.g. with slower development and larger size in individuals headed for diapause. The developmental timing of these differences may be of adaptive importance: if pathways diverge late, the scope for phenotypic differences is smaller, whereas if pathways diverge early, the risk is higher of expressing a maladaptive phenotype if the selective environment changes. Here we explore the effects of changes in photoperiodic information during life on pupal diapause and associated life history traits in the butterfly Pararge aegeria. We find that both pupal diapause and larval development rate are asymmetrically regulated: while exposure to long days late in life (regardless of earlier experiences) was sufficient to produce nondiapause development and accelerate larval development accordingly, more prolonged exposure to short days was required to induce diapause and slow down pre-diapause larval development. While the two developmental pathways diverged early in development, development rates could be partially reversed by altered environmental cues. Meanwhile, pathway differences in body size were more inflexible, despite emerging late in development. Hence, in P. aegeria several traits are regulated by photoperiod, along subtly different ontogenies, into an integrated phenotype that strikes a balance between flexibility and phenotype-environment matching.


Sign in / Sign up

Export Citation Format

Share Document