scholarly journals The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria

2011 ◽  
Vol 83 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Corrine J. Porter ◽  
Radhika Bantwal ◽  
Trudi L. Bannam ◽  
Carlos J. Rosado ◽  
Mary C. Pearce ◽  
...  
2019 ◽  
Author(s):  
William Cenens ◽  
Maxuel O. Andrade ◽  
Chuck S. Farah

AbstractSeveral Xanthomonas species have a type IV secretion system (T4SS) that injects a cocktail of antibacterial proteins into neighbouring Gram-negative bacteria, often leading to rapid lysis upon cell contact. This capability represents an obvious fitness benefit since it can eliminate competition while the liberated contents of the lysed bacteria could provide an increase in the local availability of nutrients. However, the production of this Mega Dalton-sized T4SS, with over a hundred subunits, also imposes a significant metabolic cost. Here we show that the chromosomal virB operon, which encodes the entirety of structural genes of the T4SS in X. citri, is regulated by the global regulator CsrA. Relieving CsrA repression from the virB operon produced a greater number of T4SSs in the cell envelope and an increased efficiency in contact dependent lysis of target cells. However, this was also accompanied by a physiological cost leading to reduced fitness when in co-culture with wild-type X. citri. We show that T4SS production is constitutive despite being downregulated by CsrA. Cells subjected to a wide range of rich and poor growth conditions maintain a constant density of T4SSs in the cell envelope and concomitant interbacterial competitiveness. These results show that CsrA provides a constant though partial repression on the virB operon, independent of the tested growth conditions, in this way controlling T4SS-related costs while at the same time maintaining X. citri’s aggressive posture when confronted by competitors.Author SummaryXanthomonas citri is a member of a family of phytopathogenic bacteria that can cause substantial losses in crops. At different stages of the infection cycle, these cells will encounter other bacterial species with whom they will have to compete for space and nutrients. One mechanism which improves a cell’s chance to survive these encounters is a type IV secretion system that transfers a cocktail of antimicrobial effector proteins into other Gram-negative bacteria in a contact-dependent manner. Here, we show that this system is constitutively produced at a low basal level, even during low nutrient conditions, despite representing a significant metabolic burden to the cell. The conserved global regulator, CsrA, provides a constant, nutrient-independent, repression on the production T4SS components, thereby holding production costs to a minimum while at the same time ensuring X. citri’s competitiveness during encounters with bacterial rivals.


2021 ◽  
Vol 22 (24) ◽  
pp. 13637
Author(s):  
Xue Xiong ◽  
Bowen Li ◽  
Zhixiong Zhou ◽  
Guojing Gu ◽  
Mengjuan Li ◽  
...  

Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.


2001 ◽  
Vol 120 (5) ◽  
pp. A652-A653
Author(s):  
Y HIRATA ◽  
S MAEDA ◽  
Y MITUNO ◽  
M AKANUMA ◽  
T KAWABE ◽  
...  

2019 ◽  
Vol 156 (6) ◽  
pp. S-171-S-172 ◽  
Author(s):  
Lydia Wroblewski ◽  
Eunyoung Choi ◽  
Christine Petersen ◽  
Alberto Delgado ◽  
M. Blanca Piazuelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document