scholarly journals Modelling the high-mass accretion rate spectra of GX 339−4: black hole spin from reflection?

Author(s):  
Mari Kolehmainen ◽  
Chris Done ◽  
María Díaz Trigo
2002 ◽  
Vol 206 ◽  
pp. 400-403
Author(s):  
Yuko Ishihara ◽  
Naomasa Nakai ◽  
Naoko Iyomoto ◽  
Kazuo Makishima ◽  
Phil Diamond ◽  
...  

Our observations of H2O masers have detected some high-velocity features and a secular velocity drift of the systemic features in the Seyfert 2 Galaxy IC 2560. The high-velocity features were blue- and red-shifted from the systemic velocity of 220-420 km s−1 and 210-350 km s−1, respectively. The velocity of the systemic features drifted at a secular rate of 2.62 km s−1 yr−1. Assuming the existence of a compact rotating disk as in NGC 4258, IC 2560 possesses a nuclear disk with inner and outer radii of 0.07 pc and 0.26 pc, respectively, and a confined mass of 2.8 × 106M⊙ at the center, making the central density > 2.1 × 109M⊙ pc−3. Such a dense object cannot be a cluster of stars, and this strongly suggests that the central mass is a super-massive black hole. Since the 2-10 keV luminosity of IC 2560 is 1 × 1041 erg s−1, the mass accretion rate of the suggested black hole must be 2 × 10−5M⊙ yr−1.


2018 ◽  
Vol 14 (S346) ◽  
pp. 426-432
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
P. Marchant ◽  
V. Kalogera ◽  
...  

AbstractThe six LIGO detections of merging black holes (BHs) allowed to infer slow spin values for the two pre-merging BHs. The three cases where the spins of the BHs can be determined in high-mass X-ray binaries (HMXBs) show that those BHs have high spin values. We discuss here scenarios explaining these differences in spin properties in these two classes of object.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
G. Abbas ◽  
A. Ditta

AbstractThe accretion of test fluids flowing onto a black hole is investigated. Particularly, by adopting a dynamical Hamiltonian approach, we are capable to find the critical points for various cases of black hole in conformal gravity. In these cases, we have analyzed the general solutions of accretion employing the isothermal equations of state. The steady state and spherically symmetric accretion of different test fluids onto the conformal gravity black hole has been considered. Further, we have classified these flows in the context of equations of state and the cases of conformal gravity black hole. The new behavior of polytropic fluid accretion is also discussed in all three cases of black hole. Black hole mass accretion rate is the most important part of this research in which we have investigated that the Schwarzschild black hole produce a typical signature than the conformal gravity black hole and Schwarzschild–de Sitter black hole. The critical fluid flow and the mass accretion rate have been presented graphically by the impact parameters $$\beta $$ β , $$\gamma $$ γ , k and these parameters have great significance. Additionally, the maximum mass rate of accretion fall near the universal and Killing horizons and minimum rate of accretion occurs in between these regions. Finally, the results are compared with the different cases of black hole available in the literature.


2020 ◽  
Vol 636 ◽  
pp. A94 ◽  
Author(s):  
Jeffrey van der Gucht ◽  
Jordy Davelaar ◽  
Luc Hendriks ◽  
Oliver Porth ◽  
Hector Olivares ◽  
...  

Context. The Event Horizon Telescope recently observed the first shadow of a black hole. Images like this can potentially be used to test or constrain theories of gravity and deepen the understanding in plasma physics at event horizon scales, which requires accurate parameter estimations. Aims. In this work, we present Deep Horizon, two convolutional deep neural networks that recover the physical parameters from images of black hole shadows. We investigate the effects of a limited telescope resolution and observations at higher frequencies. Methods. We trained two convolutional deep neural networks on a large image library of simulated mock data. The first network is a Bayesian deep neural regression network and is used to recover the viewing angle i, and position angle, mass accretion rate Ṁ, electron heating prescription Rhigh and the black hole mass MBH. The second network is a classification network that recovers the black hole spin a. Results. We find that with the current resolution of the Event Horizon Telescope, it is only possible to accurately recover a limited number of parameters of a static image, namely the mass and mass accretion rate. Since potential future space-based observing missions will operate at frequencies above 230 GHz, we also investigated the applicability of our network at a frequency of 690 GHz. The expected resolution of space-based missions is higher than the current resolution of the Event Horizon Telescope, and we show that Deep Horizon can accurately recover the parameters of simulated observations with a comparable resolution to such missions.


2020 ◽  
Vol 643 ◽  
pp. A87
Author(s):  
Thomas Rometsch ◽  
Peter J. Rodenkirch ◽  
Wilhelm Kley ◽  
Cornelis P. Dullemond

Context. Transition discs form a special class of protoplanetary discs that are characterised by a deficiency of disc material close to the star. In a subgroup, inner holes in these discs can stretch out to a few tens of au while there is still mass accretion onto the central star observed at the same time. Aims. We analyse the proposition that this type of wide transition disc is generated by the interaction of the disc with a system of embedded planets. Methods. We performed two-dimensional hydrodynamics simulations of a flat disc. Different equations of state were used including locally isothermal models and more realistic cases that consider viscous heating, radiative cooling, and stellar heating. Two massive planets (with masses of between three and nine Jupiter masses) were embedded in the disc and their dynamical evolution due to disc–planet interaction was followed for over 100 000 yr. The simulations account for mass accretion onto the star and planets. We included models with parameters reminiscent of the system PDS 70. To assess the observability of features in our models we performed synthetic ALMA observations. Results. For systems with a more massive inner planet, there are phases where both planets migrate outward engaged in a 2:1 mean motion resonance via the Masset-Snellgrove mechanism. In sufficiently massive discs, the resulting formation of a vortex and the interaction with it can trigger rapid outward migration of the outer planet where its distance can increase by tens of au in a few thousand years. After another few thousand years, the outer planet rapidly migrates back inwards into resonance with the inner planet. We call this emerging composite phenomenon a migration jump. Outward migration and the migration jumps are accompanied by a high mass accretion rate onto the star. The synthetic images reveal numerous substructures depending on the type of dynamical behaviour. Conclusions. Our results suggest that the outward migration of two embedded planets is a prime candidate for the explanation of the observed high stellar mass accretion rate in wide transition discs. The models for PDS 70 indicate it is not currently undergoing a migration jump but might very well be in a phase of outward migration.


Sign in / Sign up

Export Citation Format

Share Document