scholarly journals Probing general relativistic effects during active galactic nuclei X-ray eclipses

2011 ◽  
Vol 417 (1) ◽  
pp. 178-183 ◽  
Author(s):  
G. Risaliti ◽  
E. Nardini ◽  
M. Elvis ◽  
L. Brenneman ◽  
M. Salvati
1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


1998 ◽  
Vol 188 ◽  
pp. 141-144
Author(s):  
K. Iwasawa

X-ray spectroscopy of the broad iron line has revealed some relativistic effects caused by strong gravity about a black hole in active galactic nuclei (AGN). Recent results from ASCA observations of AGNs are reviewed.


2006 ◽  
Vol 2 (S238) ◽  
pp. 425-426
Author(s):  
Tomáš Pecháček ◽  
Michal Dovčiak ◽  
Vladimír Karas

AbstractSome aspects of power-spectral densities (PSD) of active galactic nuclei are similar to those of galactic black hole X-ray binary systems (McHardy et al. 2005). The signal originates near a black hole and its modulation by general-relativistic effects should be taken into account (Życki & Nedźwiecki 2005). We modified the previous calculations of these effects, assuming a model of spots which occur on the disc surface and decay with a certain lifetime.


2020 ◽  
Vol 495 (3) ◽  
pp. 3373-3386
Author(s):  
Savithri H Ezhikode ◽  
Gulab C Dewangan ◽  
Ranjeev Misra ◽  
Ninan Sajeeth Philip

ABSTRACT The primary X-ray emission from active galactic nuclei (AGNs), described by a power-law, irradiates the accretion disc producing reflection features in the spectrum. The reflection features arising from the inner regions of the disc can be significantly modified by the relativistic effects near the black hole. We investigate the relationship between the relativistic reflection fraction Rf, defined as the ratio of the coronal intensity that illuminates the accretion disc to the coronal intensity observed directly, and the hard X-ray photon index Γ of a Nuclear Spectroscopic Telescope Array (NuSTAR) sample of Seyfert 1 galaxies. The X-ray spectra are modelled using relxill code that helps to directly obtain the reflection fraction of a relativistically smeared reflection component. The parameter Rf depends on the amount of Comptonized X-ray emission intercepted by the inner accretion disc. We found a positive correlation between Γ and Rf in our sample. Seed photons from a larger area of an accretion disc entering the corona will result in increased cooling of the coronal plasma, giving rise to steeper X-ray spectrum. The corona irradiating the larger area of the disc will result in higher reflection fraction. Thus, the observed Rf –Γ relation is most likely related to the variations in the disc–corona geometry of AGNs.


2019 ◽  
Vol 488 (3) ◽  
pp. 4378-4388
Author(s):  
Jingwei Hu ◽  
Zhu Liu ◽  
Chichuan Jin ◽  
Weimin Yuan

ABSTRACT While a broad Fe Kα emission line is generally found in the X-ray spectra of radio quiet (RQ) active galactic nuclei (AGNs), this feature, commonly thought to be broadened by the relativistic effects near the central black hole, appears to be rare in their radio loud (RL) counterparts. In this paper, we carry out a detailed study of the ensemble property of the X-ray spectra, focusing on the Fe line, of 97 RL AGNs by applying the spectral stacking method to the spectra obtained with XMM–Newton. For comparison, the same analysis is also performed for 193 RQ AGNs. Both a narrow and a broad component of the Fe Kα line are detected at high significance in the stacked spectra of both samples. The broad lines can be well fitted with relativistically broadened line profiles. Our results suggest that, as in their RQ counterparts, a relativistic Fe line component is commonly present in RL AGNs, though it may not be detected unambiguously in individual objects with spectra of relatively low signal to noise. We try to constrain the average spin of the black holes for both the RL and RQ AGN samples by modelling their composite Fe line spectral profiles with relativistic disc line models. For the RL sample, the average spin is loosely constrained and a wide range is allowed except for very fast spins (<0.78, 90 per cent confidence), while for the RQ sample, it is constrained to be low or moderate (<0.24). We conclude that the more precise measurement of the black hole spins in RL AGNs has to await for the advent of future high-throughput X-ray telescopes.


1997 ◽  
Vol 487 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Gang Bao ◽  
Petr Hadrava ◽  
Paul J. Wiita ◽  
Ying Xiong

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2020 ◽  
Vol 499 (4) ◽  
pp. 5163-5174
Author(s):  
A Juráňová ◽  
N Werner ◽  
P E J Nulsen ◽  
M Gaspari ◽  
K Lakhchaura ◽  
...  

ABSTRACT X-ray emitting atmospheres of non-rotating early-type galaxies and their connection to central active galactic nuclei have been thoroughly studied over the years. However, in systems with significant angular momentum, processes of heating and cooling are likely to proceed differently. We present an analysis of the hot atmospheres of six lenticulars and a spiral galaxy to study the effects of angular momentum on the hot gas properties. We find an alignment between the hot gas and the stellar distribution, with the ellipticity of the X-ray emission generally lower than that of the optical stellar emission, consistent with theoretical predictions for rotationally supported hot atmospheres. The entropy profiles of NGC 4382 and the massive spiral galaxy NGC 1961 are significantly shallower than the entropy distribution in other galaxies, suggesting the presence of strong heating (via outflows or compressional) in the central regions of these systems. Finally, we investigate the thermal (in)stability of the hot atmospheres via criteria such as the TI- and C-ratio, and discuss the possibility that the discs of cold gas present in these objects have condensed out of the hot atmospheres.


2006 ◽  
Vol 651 (2) ◽  
pp. 749-766 ◽  
Author(s):  
Iskra V. Strateva ◽  
W. N. Brandt ◽  
Michael Eracleous ◽  
Donald P. Schneider ◽  
George Chartas

Sign in / Sign up

Export Citation Format

Share Document