scholarly journals The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery

2004 ◽  
Vol 27 (12) ◽  
pp. 1503-1514 ◽  
Author(s):  
Y. H. ZHOU ◽  
J. Q. YU ◽  
L. F. HUANG ◽  
S. NOGUES
1997 ◽  
Vol 24 (4) ◽  
pp. 495 ◽  
Author(s):  
James R. Andrews ◽  
Neil R. Baker

Wheat (C3) and maize (C4) leaves were exposed to light treatments that were limiting for CO2 assimilation and which excite preferentially photosystem I (PSI) or photosystem II (PSII) and induce State 1 or State 2, respectively. In order to examine the relationships between linear electron transport and CO2 in leaves during State transitions, simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PSII and PSI photochemistry. In wheat leaves with photorespiratory activity, no significant change in quantum efficiency of CO2assimilation was observed during State transitions. This was not the case when photorespiration was inhibited with either 2% O2 or 1000 ppm CO2 and transition from State 2 to State 1 was accompanied by a large decrease (c. 20%) in the quantum efficiency of CO2 assimilation which was not associated with a decrease in the quantum efficiency of electron transport through PSII. Photorespiration appears to buffer the quantum efficiency of CO2 assimilation from changes associated with decreases in the rate of CO2 fixation resulting from imbalances in PPFD absorption by PSI and PSII. When maize leaves were subjected to similar State transitions, no significant change in the quantum efficiency of CO2 assimilation was observed on transition from State 2 to State 1, but on switching back to State 2 a very large decrease (c. 40%) was observed. This decrease could be prevented if leaves were maintained in either 2% O2 or 593 ppm CO2. The possible occurrence of photorespiration in maize leaves on transition from State 1 to State 2, which could result from an inhibition of the CO2 concentrating mechanism, cannot account for the decrease in the quantum efficiency of CO2 assimilation since the relationship between PSII electron transport and CO2 assimilation remained similar throughout the State transitions. Also changes in the phosphorylation status of the light-harvesting chlorophyll a/b protein associated with PSII cannot be implicated in this phenomenon.


2019 ◽  
Vol 143 (3) ◽  
pp. 287-299 ◽  
Author(s):  
Marie-Claire ten Veldhuis ◽  
Gennady Ananyev ◽  
G. Charles Dismukes

AbstractLichens are a symbiosis between a fungus and one or more photosynthetic microorganisms that enables the symbionts to thrive in places and conditions they could not compete independently. Exchanges of water and sugars between the symbionts are the established mechanisms that support lichen symbiosis. Herein, we present a new linkage between algal photosynthesis and fungal respiration in lichen Flavoparmelia caperata that extends the physiological nature of symbiotic co-dependent metabolisms, mutually boosting energy conversion rates in both symbionts. Measurements of electron transport by oximetry show that photosynthetic O2 is consumed internally by fungal respiration. At low light intensity, very low levels of O2 are released, while photosynthetic electron transport from water oxidation is normal as shown by intrinsic chlorophyll variable fluorescence yield (period-4 oscillations in flash-induced Fv/Fm). The rate of algal O2 production increases following consecutive series of illumination periods, at low and with limited saturation at high light intensities, in contrast to light saturation in free-living algae. We attribute this effect to arise from the availability of more CO2 produced by fungal respiration of photosynthetically generated sugars. We conclude that the lichen symbionts are metabolically coupled by energy conversion through exchange of terminal electron donors and acceptors used in both photosynthesis and fungal respiration. Algal sugars and O2 are consumed by the fungal symbiont, while fungal delivered CO2 is consumed by the alga.


2011 ◽  
Vol 23 (1) ◽  
pp. 304-321 ◽  
Author(s):  
Markus Rott ◽  
Nádia F. Martins ◽  
Wolfram Thiele ◽  
Wolfgang Lein ◽  
Ralph Bock ◽  
...  

1998 ◽  
Vol 116 (2) ◽  
pp. 571-580 ◽  
Author(s):  
Michael J. Fryer ◽  
James R. Andrews ◽  
Kevin Oxborough ◽  
David A. Blowers ◽  
Neil R. Baker

Sign in / Sign up

Export Citation Format

Share Document