ChemInform Abstract: FIQ and FIQ2, New Q-Site Inhibitors for Photosynthetic Electron Transport: Synthesis and the Relationship Between Stereochemistry and Biological Activity.

ChemInform ◽  
2010 ◽  
Vol 30 (46) ◽  
pp. no-no
Author(s):  
Robert J. Pilling ◽  
Donald A. Whiting
1997 ◽  
Vol 24 (4) ◽  
pp. 495 ◽  
Author(s):  
James R. Andrews ◽  
Neil R. Baker

Wheat (C3) and maize (C4) leaves were exposed to light treatments that were limiting for CO2 assimilation and which excite preferentially photosystem I (PSI) or photosystem II (PSII) and induce State 1 or State 2, respectively. In order to examine the relationships between linear electron transport and CO2 in leaves during State transitions, simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PSII and PSI photochemistry. In wheat leaves with photorespiratory activity, no significant change in quantum efficiency of CO2assimilation was observed during State transitions. This was not the case when photorespiration was inhibited with either 2% O2 or 1000 ppm CO2 and transition from State 2 to State 1 was accompanied by a large decrease (c. 20%) in the quantum efficiency of CO2 assimilation which was not associated with a decrease in the quantum efficiency of electron transport through PSII. Photorespiration appears to buffer the quantum efficiency of CO2 assimilation from changes associated with decreases in the rate of CO2 fixation resulting from imbalances in PPFD absorption by PSI and PSII. When maize leaves were subjected to similar State transitions, no significant change in the quantum efficiency of CO2 assimilation was observed on transition from State 2 to State 1, but on switching back to State 2 a very large decrease (c. 40%) was observed. This decrease could be prevented if leaves were maintained in either 2% O2 or 593 ppm CO2. The possible occurrence of photorespiration in maize leaves on transition from State 1 to State 2, which could result from an inhibition of the CO2 concentrating mechanism, cannot account for the decrease in the quantum efficiency of CO2 assimilation since the relationship between PSII electron transport and CO2 assimilation remained similar throughout the State transitions. Also changes in the phosphorylation status of the light-harvesting chlorophyll a/b protein associated with PSII cannot be implicated in this phenomenon.


2005 ◽  
Vol 3 (4) ◽  
pp. 622-646 ◽  
Author(s):  
Renata Ga<parová ◽  
Daniel Zbojek ◽  
Margita Lácová ◽  
Katarína Král'ová ◽  
Anton Gatial ◽  
...  

AbstractThe reactions of substituted furo[3,2-b]pyrrole-5-carboxhydrazides 1 with 5-arylfuran-2-carboxaldehydes 2, 4,5-disubstituted furan-2-carboxaldehydes 3 and thiophene-2-carboxaldehyde 4 has been studied. The advantage of microwave irradiation on some of these reactions was reflected in the reduced reaction time and increased yields. Reactions of 1 with 4-substituted 1,3-oxazol-5(4H)-ones 11 led to diacylhydrazines 13 or to imidazole derivatives 14 depending on the temperature. 1,2,4-Triazole-3-thione 17 was synthesized by two-step reaction of 1 with phenylisothiocyanate and subsequent base-catalyzed cyclization of thiosemicarbazide 16. The effects of hydrazones 5–10 on inhibition of photosynthetic electron transport in spinach chloroplasts and chlorophyll content in the antialgal suspensions of Chlorella vulgaris were investigated.


Author(s):  
D. Z. Habash ◽  
M. A. J. Parry ◽  
M. J. Paul ◽  
S. Parmar ◽  
S. Driscoll ◽  
...  

1980 ◽  
Vol 35 (9-10) ◽  
pp. 770-775 ◽  
Author(s):  
E. F. Elstner ◽  
H. P. Fischer ◽  
W. Osswald ◽  
G. Kwiatkowski

Abstract Oxygen reduction by chloroplast lamellae is catalyzed by low potential redox dyes with E′0 values between -0 .3 8 V and -0 .6 V. Compounds of E′0 values of -0 .6 7 V and lower are inactive. In subchloroplast particles with an active photosystem I but devoid of photosynthetic electron transport between the two photosystems, the active redox compounds enhance chlorophyll bleaching, superoxide formation and ethane production independent on exogenous substrates or electron donors. The activities of these compounds decrease with decreasing redox potential, with one exception: 1-methyl-4,4′-bipyridini urn bromide with an E′0 value of lower -1 V (and thus no electron acceptor of photosystem I in chloroplast lamellae with intact electron transport) stimulates light dependent superoxide formation and unsaturated fatty acid peroxidation in sub­ chloroplast particles, maximal rates appearing after almost complete chlorophyll bleaching. Since this activity is not visible with compounds with redox potentials below -0 .6 V lacking the nitrogen atom at the 1-position of the pyridinium substituent, we assume that 1 -methyl-4,4′-bi-pyridinium bromide is “activated” by a yet unknown light reaction.


Sign in / Sign up

Export Citation Format

Share Document