The Reaction of Spring Wheat Cultivars infected with Black Rust (Puccinia graminis Pers.) in Glasshouse Tests, 1963?1968

1970 ◽  
Vol 19 (4) ◽  
pp. 185-188
Author(s):  
J. K. Doodson
2017 ◽  
Vol 107 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Colin W. Hiebert ◽  
Matthew N. Rouse ◽  
Jayaveeramuthu Nirmala ◽  
Tom Fetch

Stem rust, caused by Puccinia graminis f. sp. tritici, is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of P. graminis f. sp. tritici in Africa have been detected and characterized. These include race TRTTF and the Ug99 group of races such as TTKSK. Several Canadian and U.S. spring wheat cultivars, including the widely grown Canadian cultivar ‘Harvest’, are resistant to TRTTF. However, the genetic basis of resistance to TRTTF in Canadian and U.S. spring wheat cultivars is unknown. The objectives of this study were to determine the number of Sr genes involved in TRTTF resistance in Harvest, genetically map the resistance with DNA markers, and use markers to assess the distribution of that resistance in a panel of Canadian cultivars. A doubled haploid (DH) population was produced from the cross LMPG-6S/Harvest. The DH population was tested with race TRTTF at the seedling stage. Of 92 DH progeny evaluated, 46 were resistant and 46 were susceptible which perfectly fit a 1:1 ratio indicating a single Sr gene was responsible for conferring resistance to TRTTF in Harvest. Mapping with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers placed the resistance gene distally on the chromosome 6AS genetic map, which corresponded to the location reported for Sr8. SSR marker gwm459 and 30 cosegregating SNP markers showed the closest linkage, mapping 2.2 cM proximal to the Sr gene. Gene Sr8a confers resistance to TRTTF and may account for the resistance in Harvest. Testing a panel of Canadian wheat cultivars with four SNP markers closely linked to resistance to TRTTF suggested that the resistance present in Harvest is present in many Canadian cultivars. Two of these SNP markers were also predictive of TRTTF resistance in a panel of 241 spring wheat lines from the United States, Canada, and Mexico.


2016 ◽  
Vol 64 (22) ◽  
pp. 4545-4555 ◽  
Author(s):  
Thomas Etzerodt ◽  
Rene Gislum ◽  
Bente B. Laursen ◽  
Kirsten Heinrichson ◽  
Per L. Gregersen ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


Crop Science ◽  
1996 ◽  
Vol 36 (4) ◽  
pp. 982-986 ◽  
Author(s):  
M. A. Moustafa ◽  
L. Boersma ◽  
W. E. Kronstad

2020 ◽  
Vol 50 (2) ◽  
pp. 39-46
Author(s):  
A. A. Razina ◽  
F. S. Sultanov ◽  
О. G. Dyatlova

The results of studying resistance of mid-ripening spring wheat cultivars to root rot in the forest-steppe zone of Irkutsk region are presented. The study was conducted in a two-factor field experiment. Factor A – mid-ripening spring wheat cultivars: Tulunskaya 11 (control), Zoryana, Маrsianka, Stolypinka (new cultivars). Factor B – seeding dates: May 10, 20, 30, preceded by fallow. The experimental plot area was 70.0 m2. The experiment was repeated three times. Plot arrangement was randomized. Root rot prevalence was determined during the tillering phase of the crop. In 2018, the sowing dates did not affect the disease due to the long spring-summer drought (May-June) and a higher average daily temperature compared to long-term average values. In arid and cold conditions of May 2019, with the late sowing period (May 30), root rot prevalence was significantly lower than when sowing on May 10 and 20. In 2019, a higher level of the disease was registered than in 2018 by 14.3%. Significant differences in root rot prevalence in both years of research were noted between the control cultivar Tulunskaya 11 and the new cultivars of spring wheat Zoryana and Stolypinka. In the tillering phase of the latter two, disease indicators were lower by 5.6% and 10.5% in 2018, and by 8.8% and 7.9% in 2019, respectively. Маrsianka cultivar was at the control level for this indicator. The best cultivar under study was Stolypinka, which was not only less affected by root rot, but also gave a statistically significant yield increase of 0.16 t/ ha in 2018 and 0.22 t/ha in 2019.


1980 ◽  
Vol 60 (4) ◽  
pp. 1467-1472 ◽  
Author(s):  
S. H. F. CHINN ◽  
P. R. VERMA ◽  
D. T. SPURR

The effects of seed treatment with imazalil at 0.2 and 0.3 g a.i./kg seed on subcrown internode length and occurrence of coleoptile-node-tillers (CNT) was studied in four spring wheat cultivars at two locations in Saskatchewan. Without treatment, Cypress had the longest internodes followed in descending order by Glenlea, Neepawa, and Wascana. Generally, plants from imazalil-treated seed had significantly shorter subcrown internodes. Only a few plants from nontreated seed produced CNT and of these, many were soft or aborted, while the treated seed produced a number of CNT and many of these were firm tillers. The possible importance of these morphological changes in the reduction of common root rot, on drought resistance, cold hardiness, and yield is discussed.


Sign in / Sign up

Export Citation Format

Share Document