Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments

Weed Research ◽  
2005 ◽  
Vol 45 (6) ◽  
pp. 467-476 ◽  
Author(s):  
W J SONG ◽  
W J ZHOU ◽  
Z L JIN ◽  
D D CAO ◽  
D M JOEL ◽  
...  
2019 ◽  
Vol 52 (2) ◽  
pp. 178-185
Author(s):  
S.A. Tabatabaei ◽  
N. Bayatian ◽  
S. Nikoumaram ◽  
O. Ansari

Abstract Seed germination is a complex biological process that is influenced by different environmental physical factors including temperature, water potential, salinity, pH and light, as well as intrinsic genetic factors. In such environments, the water needed for germination is available for only a short time, and consequently, successful crop establishment depends not only on rapid and uniform germination of the seedlot, but also on its ability to germinate under low water availability. All of these attributes can be analyzed through the hydrotime model (HT). Millet (Panicum miliaceum L.) is cultivated in arid and semi-arid regions of Iran. Therefore, in this study, using the hydrotime modeling approach, germination response of millet to priming (water and gibberellin 50 ppm at 15°C for 24 h) and water potential (0, -0.3, -0.6, -0.9, and -1.2 Mpa) was studied. Hydrotime (HT) model were fitted to cumulative germination of seeds and recorded in germination tests carried out at different water potentials (0, -0.3, -0.6, -0.9 and -1.2 MPa) and priming treatments (control, hydropriming and hormone priming). Results showed that, germination of millet decreased significantly with reduction of osmotic potential. Results indicated that the hydro-time constant (θH) for control, hydro-priming and hormone priming were 0.89, 0.79 and 0.67 MPa d, the water potential (Ψb(50)) for control, hydropriming and hormone priming were -0.89, -0.94 and -1.11 MPa, respectively. Results indicated that the use of hydrotime model in germination prediction could be useful to provide more accurate estimates for the timing of sowing and management of millet.


Author(s):  
Rong Li ◽  
Dandan Min ◽  
Lijun Chen ◽  
Chunyang Chen ◽  
Xiaowen Hu

This study determined the effects of priming on germination in response to temperature, water potential and NaCl. Thermal and hydrotime models were utilized to evaluate changes in parameters of the model after priming. Priming reduced the amount of thermal time in both cultivars, but slightly increased the base temperature for germination from 1.0 to 3.5°C in “Longdong”. Priming significantly increased germination rate at high water potential but had no effect at low water potential. Further, priming reduced the hydrotime constant but made the median base water potential value slightly more positive in both cultivars. Thus, priming increased germination rate in water but decrease it under severe water stress. Germination rate was significantly increased in both cultivars under salinity (NaCl) stress. Moreover, priming improved seedling growth in response to temperature, water and salinity stress in both cultivars.


Sign in / Sign up

Export Citation Format

Share Document