Delineation of human cord blood hematopoietic progenitor cell subsets with a unique monoclonal antibody AY19

1998 ◽  
Vol 51 (5) ◽  
pp. 520-527 ◽  
Author(s):  
L. Abadie-Fauconnier ◽  
E.D. Carosella ◽  
E. Gluckman ◽  
I.-G. Mansur ◽  
C. Menier ◽  
...  
Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4060-4066 ◽  
Author(s):  
Maria Fiammetta Romano ◽  
Annalisa Lamberti ◽  
Rita Bisogni ◽  
Corrado Garbi ◽  
Antonio M. Pagnano ◽  
...  

Abstract We investigated the involvement of NF-κB/Rel transcription factors that reportedly can inhibit apoptosis in various cell types in the antiapoptotic mechanism of the cytoprotectant amifostine. In the nontumorigenic murine myeloid progenitor 32D cells incubated with amifostine, we detected a reduction of the IκB cytoplasmic levels by Western blotting and a raising of nuclear NF-κB/Rel complexes by electrophoretic mobility shift assay. Amifostine inhibited by more than 30% the growth factor deprivation-induced apoptosis, whereas its effect failed when we blocked the NF-κB/Rel activity with an NF-κB/Rel-binding phosphorothioate decoy oligodeoxynucleotide. In human cord blood CD34+ cells, the NF-κB/Rel p65 subunit was detectable (using immunofluorescence analysis) mainly in the cytoplasm in the absence of amifostine, whereas its presence was appreciable in the nuclei of cells incubated with the cytoprotectant. In 4 CD34+ samples incubated for 3 days in cytokine-deficient conditions, cell apoptosis was reduced by more than 30% in the presence of amifostine (or amifostine plus a control oligo); the effect of amifostine was abolished in cultures with the decoy oligo. These findings indicate that the inhibition of hematopoietic progenitor cell apoptosis by amifostine requires the induction of NF-κB/Rel factors and that the latter can therefore exert an antiapoptotic activity in the hematopoietic progenitor cell compartment. Furthermore, the identification of this specific mechanism underlying the survival-promoting activity of amifostine lends support to the possible use of this agent in apoptosis-related pathologies, such as myelodysplasias.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4060-4066 ◽  
Author(s):  
Maria Fiammetta Romano ◽  
Annalisa Lamberti ◽  
Rita Bisogni ◽  
Corrado Garbi ◽  
Antonio M. Pagnano ◽  
...  

We investigated the involvement of NF-κB/Rel transcription factors that reportedly can inhibit apoptosis in various cell types in the antiapoptotic mechanism of the cytoprotectant amifostine. In the nontumorigenic murine myeloid progenitor 32D cells incubated with amifostine, we detected a reduction of the IκB cytoplasmic levels by Western blotting and a raising of nuclear NF-κB/Rel complexes by electrophoretic mobility shift assay. Amifostine inhibited by more than 30% the growth factor deprivation-induced apoptosis, whereas its effect failed when we blocked the NF-κB/Rel activity with an NF-κB/Rel-binding phosphorothioate decoy oligodeoxynucleotide. In human cord blood CD34+ cells, the NF-κB/Rel p65 subunit was detectable (using immunofluorescence analysis) mainly in the cytoplasm in the absence of amifostine, whereas its presence was appreciable in the nuclei of cells incubated with the cytoprotectant. In 4 CD34+ samples incubated for 3 days in cytokine-deficient conditions, cell apoptosis was reduced by more than 30% in the presence of amifostine (or amifostine plus a control oligo); the effect of amifostine was abolished in cultures with the decoy oligo. These findings indicate that the inhibition of hematopoietic progenitor cell apoptosis by amifostine requires the induction of NF-κB/Rel factors and that the latter can therefore exert an antiapoptotic activity in the hematopoietic progenitor cell compartment. Furthermore, the identification of this specific mechanism underlying the survival-promoting activity of amifostine lends support to the possible use of this agent in apoptosis-related pathologies, such as myelodysplasias.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3722-3729 ◽  
Author(s):  
J.D. Cashman ◽  
I. Clark-Lewis ◽  
A.C. Eaves ◽  
C.J. Eaves

Abstract Nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice transplanted with human cord blood or adult marrow cells and injected 6 weeks posttransplant with 2 daily doses of transforming growth factor-β1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), or a nonaggregating form of macrophage inflammatory protein-1 (MIP-1) showed unique patterns of inhibition of human progenitor proliferation 1 day later. TGF-β1 was active on long-term culture initiating cells (LTC-IC) and on primitive erythroid and granulopoietic colony-forming cells (HPP-CFC), but had no effect on mature CFC. MCP-1 inhibited the cycling of both types of HPP-CFC but not LTC-IC. MIP-1 did not inhibit either LTC-IC or granulopoietic HPP-CFC but was active on erythroid HPP-CFC and mature granulopoietic CFC. All of these responses were independent of the source of human cells transplanted. LTC-IC of either human cord blood or adult marrow origin continue to proliferate in NOD/SCID mice for many weeks, although the turnover of all types of human CFC in mice transplanted with adult human marrow (but not cord blood) is downregulated after 6 weeks. Interestingly, administration of either MIP-1β, an antagonist of both MIP-1 and MCP-1 or MCP-1(9-76), an antagonist of MCP-1 (and MCP-2 and MCP-3), into mice in which human marrow-derived CFC had become quiescent, caused the rapid reactivation of these progenitors in vivo. These results provide the first definition of stage-specific inhibitors of human hematopoietic progenitor cell cycling in vivo. In addition they show that endogenous chemokines can contribute to late graft failure, which can be reversed by the administration of specific antagonists.


Transfusion ◽  
2008 ◽  
Vol 48 (3) ◽  
pp. 546-549 ◽  
Author(s):  
Anneke Brand ◽  
Hermann Eichler ◽  
Zbigniew M. Szczepiorkowski ◽  
John R. Hess ◽  
Riitta Kekomaki ◽  
...  

Transfusion ◽  
2005 ◽  
Vol 45 (11) ◽  
pp. 1828-1828 ◽  
Author(s):  
Pilar Solves ◽  
Vicente Mirabet ◽  
Alfredo Perales ◽  
Ma Angeles Soler

Transfusion ◽  
2005 ◽  
Vol 45 (4) ◽  
pp. 613-621 ◽  
Author(s):  
Pekka Aroviita ◽  
Kari Teramo ◽  
Vilho Hiilesmaa ◽  
Riitta Kekomäki

Sign in / Sign up

Export Citation Format

Share Document