Enzymatic, isoelectric, and molecular-weight characterization of water-soluble maize-pollen proteins

1980 ◽  
Vol 48 (3) ◽  
pp. 371-374 ◽  
Author(s):  
E. I. ORTEGA ◽  
L. S. BATES
2000 ◽  
Vol 6 (3) ◽  
pp. 197-205 ◽  
Author(s):  
T. Jimenez ◽  
M.A. Martinez-Anaya

Water soluble pentosans (WSP) from doughs and breads made with different enzyme preparations are characterized according to extraction yield, sugar composition, xylose/arabinose ratio and molecular weight (MW) distribution. Extraction yield was greater for dough than for bread samples, ranging from 0.94 to 1.64%, but bread extracts had a higher purity. Percent of pentoses in purified WSP was greater in pentosanase supplemented samples (28-55%) than in control and amylase containing samples (23-32%). Major sugars were xylose and arabinose, but glucose and mannose also appeared in the extracts. The xylose/arabinose (Xyl/Ara) ratio was 1.3-1.6 and underwent small changes during processing. Enzyme addition caused an increase in Xyl/Ara ratio, attributable to a debranching of arabinoxylans (AX) with higher degree of Ara substitution by arabinofuranosidase. Addition of pentosanases had a significant effect in increasing WSP with MW over 39 000, whereas those of low MW changed only slightly. MW distribution depended on enzyme source, and whereas some enzymes showed activity during fermentation others increased their activity during baking. No synergistic effects were observed in studied variables due to the combination of amylases with pentosanases. Protein in WSP extracts eluted together with ferulic acid suggesting they were linked, but not associated with a determined carbohydrate fraction.


2017 ◽  
Author(s):  
Stefan Jenkins ◽  
Tami L Swenson ◽  
Rebecca Lau ◽  
Andrea Rocha ◽  
Alex Aaring ◽  
...  

Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil isolates. Environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil metabolites. To broadly characterize soil metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids, osmolytes, nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Water soluble organic carbon was fractionated by molecular weight and measured to determine the fraction of carbon accounted for by the quantified metabolites. This revealed that, much like soil microbial community structures, these soil metabolites have an uneven quantitative distribution, with a single metabolite, trehalose accounting for 9.9 percent of the (< 1 kDa) water extractable organic carbon. This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate SDM for supporting the growth of bacteria found at this field site, we examined the growth of 30 phylogenetically diverse soil isolates obtained using standard R2A medium. The simpler SDM1 supported the growth of up to 13 isolates while the more complex SDM2 supported up to 25 isolates. One isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis to investigate SDM1 substrate preferences. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a tractable environmentally relevant media. We anticipate that this approach can be expanded to other environments to enhance isolation and characterization of diverse microbial communities.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Long Chen ◽  
Xichun Peng ◽  
Jiaying Lv ◽  
Siyin Liao ◽  
Shiyi Ou ◽  
...  

Polysaccharide is one of the important active ingredients of Cantharellus cibarius. The aims of this work were to analyze preliminary characterization and to investigate immunostimulating activity of a novel water-soluble neutral polysaccharide named JP1, which was purified from the fruiting body of Cantharellus cibarius using DEAE-FF chromatography and Sephadex G-100 chromatography. The characteristics of JP1 were determined by HPGPC, FT-IR spectra, gas chromatography, and Congo Red Method. Immunostimulating activity of JP1 was investigated in RAW264.7 cells. Results indicated that JP1 consisted of L-Arabinose, D-Mannose, D-Glucose, and D-Galactose in a molar ratio of 1 : 1.06 : 1.95 : 1.17 with a molecular weight of 336 kDa. JP1 is nontoxic to RAW264.7 cells at this concentration range (62.5–1000 μg/mL). Furthermore, JP1 can promote mouse peritoneal macrophages to secrete NO and enhance the secretion of macrophages’ cytokines IL-6 in RAW264.7 cells. These results suggested that JP1 could have potential immunostimulating activity applications as medicine or functional food.


1978 ◽  
Vol 173 (2) ◽  
pp. 569-578 ◽  
Author(s):  
T Marshall ◽  
A Allen

1. A high-molecular-weight glycoprotein constitutes over 80% by weight of the total glycoprotein from water-soluble pig colonic mucus. 2. It was isolated from from nucleic acid and non-covalently bound protein by nuclease digestion followed by equilibrium centrifugation in a CsCl gradient. 3. The glycoprotein has the following composition by weight: fucose 10.4%; glucosamine 23.9%; galactosamine 8.3%; sialic acid 9.9%; galactose 20.8%; sulphate 3.0%; protein 13.3%; moisture about 10%. 4. The native glycoprotein has the high mol.wt. of 15×10(6). 5. Reduction of the native glycoprotein with 2-mercaptoethanol results in a glycoprotein of mol.wt. 6×10(6). 6. Pronase digestion removes 29% of the protein (3% of the glycoprotein) but none of the carbohydrate. 7. The molecular weight of the Pronase-digested glycoprotein is 1.5×10(6), which is halved to 0.76×10(6) on reduction with 2-mercaptoethanol. 8. The contribution of non-covalent interactions, disulphide bridges and the non-glycosylated peptide core to the quaternary structure of the glycoprotein are discussed and compared with the known structure of pig gastric glycoportein.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Monir Tabatabai ◽  
Helmut Ritter ◽  
Monika Schmelzer

AbstractThe synthesis and characterization of N-methacryloyl-L-tyrosine methyl ester (3a) and ethyl ester (3b), and their acetyl derivatives O-acetyl-N-methacryloyl- L-tyrosine methyl ester (4a) and ethyl ester (4b) are described. Monomers 3 and 4 were complexed with RAMEB (randomly methylated ß-cyclodextrin) yielding water soluble host-guest complexes 5a-d. The radical polymerization of monomers 3 and 4 was investigated in the presence as well as in the absence of RAMEB in aqueous medium at room temperature and also at 60°C. It is shown that the polymerization tendency of complexes 5a-d at room temperature is lower, leading to polymers of higher molecular weight, compared to the free monomers 3 and 4. Furthermore, the polymerization of monomers 3 and 4 was carried out in homogenous organic solution using 2,2’-azoisobutyronitrile as initiator, and the results are discussed.


1997 ◽  
Vol 45 (3) ◽  
pp. 513-517 ◽  
Author(s):  
Takahiro UCHIDA ◽  
Kazushi YOSHIDA ◽  
Yoichi NAKADA ◽  
Noriko NAGAREYA ◽  
Yuriko KONISHI ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150490 ◽  
Author(s):  
Chen-Tien Chang ◽  
Yen-Lu Lin ◽  
Shu-Wei Lu ◽  
Chun-Wei Huang ◽  
Yu-Ting Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document