The effects of auxin and antiauxin in an in vitro bioassay of flower regulatory activity in leaf exudate from tobacco plants

1991 ◽  
Vol 81 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. Hatori ◽  
Y. Sakagami ◽  
S. Marumo
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


ACS Omega ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 8382-8393
Author(s):  
Changning Yu ◽  
Peng Lu ◽  
Shangxi Liu ◽  
Qiao Li ◽  
Erhua Xu ◽  
...  

Endocrinology ◽  
1993 ◽  
Vol 132 (5) ◽  
pp. 2073-2082 ◽  
Author(s):  
C M Foster ◽  
M Borondy ◽  
V Padmanabhan ◽  
J Schwartz ◽  
G B Kletter ◽  
...  

Author(s):  
Antonine Blondet ◽  
Guillaume Martin ◽  
Laurent Paulic ◽  
Marie-Hélène Perrard ◽  
Philippe Durand

2008 ◽  
Vol 63 (9-10) ◽  
pp. 653-657 ◽  
Author(s):  
Dolores Pérez-Laínez ◽  
Rosario García-Mateos ◽  
Ruben San Miguel-Chávez ◽  
Marcos Soto-Hernández ◽  
Enrique Rodríguez-Pérez ◽  
...  

Calia secundiflora (Ortega) Yakovlev (Fabaceae) is considered a medicinal plant in Mexico but has scarcely been used because of the toxicity of its quinolizidine alkaloids. Several quinolizidine alkaloids have shown bactericidal, nematicidal, and fungicidal activities. The purpose of this study was to identify the alkaloids in the seeds and evaluate the activity of the organic extract on several phytopathogenic fungi and bacteria. An in vitro bioassay was conducted with species of the following phytopathogenic fungi: Alternaria solani, Fusarium oxysporum and Monilia fructicola; and of the following bacteria Pseudomonas sp., Xanthomonas campestris and Erwinia carotovora. Cytisine, lupinine, anagyrine, sparteine, N-methylcytisine, 5,6-dehydrolupanine, and lupanine were identified by liquid chromatography-mass spectrometry in the extract of seeds; the most abundant compound of the extract was cytisine. It was observed that the crude extract of Calia secundiflora was moderately active on bacteria and more potent on phytopathogenic fungi. In contrast cytisine showed the opposite effects.


Sign in / Sign up

Export Citation Format

Share Document