Analysis of the callipyge phenotype through skeletal muscle development; association of Dlk1 with muscle precursor cells

2008 ◽  
Vol 76 (3) ◽  
pp. 283-298 ◽  
Author(s):  
Jason D. White ◽  
Tony Vuocolo ◽  
Matthew McDonagh ◽  
Miranda D. Grounds ◽  
Gregory S. Harper ◽  
...  
Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 5061-5073 ◽  
Author(s):  
Annette Rau ◽  
Detlev Buttgereit ◽  
Anne Holz ◽  
Richard Fetter ◽  
Stephen K. Doberstein ◽  
...  

Mutations in the rolling pebbles (rols) gene result in severe defects in myoblast fusion. Muscle precursor cells are correctly determined, but myogenesis does not progress significantly beyond this point because recognition and/or cell adhesion between muscle precursor cells and fusion-competent myoblasts is disturbed. Molecular analysis of the rols genomic region reveals two variant transcripts of rols due to different transcription initiation sites, rols6 and rols7. rols6 mRNA is detectable mainly in the endoderm during differentiation as well as in malpighian tubules and in the epidermis. By contrast, rols7 expression is restricted to the mesoderm and later to progenitor descendants during somatic and pharyngeal muscle development. Transcription starts at the extended germ band stage when progenitor/founder cells are determined and persists until stage 13. The proteins encoded by the rols gene are 1670 (Rols6) and 1900 (Rols7) amino acids in length. Both forms contain an N-terminal RING-finger motif, nine ankyrin repeats and a TPR repeat eventually overlaid by a coiled-coil domain. The longer protein, Rols7, is characterized by 309 unique N-terminal amino acids, while Rols6 is distinguishable by 79 N-terminal amino acids. Expression of rols7 in muscle founder cells indicates a function of Rols7 in these cells. Transplantation assays of rols mutant mesodermal cells into wild-type embryos show that Rols is required in muscle precursor cells and is essential to recruit fusion-competent myoblasts for myotube formation.


1997 ◽  
Vol 185 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Mindy George-Weinstein ◽  
Jacquelyn Gerhart ◽  
Jennifer Blitz ◽  
Eileen Simak ◽  
Karen A. Knudsen

2012 ◽  
Vol 303 (2) ◽  
pp. E283-E292 ◽  
Author(s):  
Christa Broholm ◽  
Claus Brandt ◽  
Ninna S. Schultz ◽  
Anders R. Nielsen ◽  
Bente K. Pedersen ◽  
...  

The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response to LIF. The mRNA and protein expressions of LIF and its receptor (LIFR) were measured in skeletal muscle biopsies from healthy individuals and patients with type 2 diabetes by use of qPCR and Western blot. LIF signaling and response were studied following administration of recombinant LIF and siRNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts from diabetic patients. Nonetheless, in the diabetic myoblasts, LIF-induced phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3 was impaired. The deficient response to LIF administration in the diabetic myoblasts was further emphasized by a lack of increase in LIF-stimulated cell proliferation and a decreased LIF-stimulated induction of the proliferation-promoting factors cyclin D1, JunB, and c-myc. SOCS3 protein was upregulated in diabetic myoblasts, and knockdown of SOCS3 rescued LIF-induced gene expression in diabetic myoblasts, whereas neither STAT1 or STAT3 signaling nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function is compromised in diabetes.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 98-111 ◽  
Author(s):  
Karl Olsson ◽  
Amarjit Saini ◽  
Anna Strömberg ◽  
Seher Alam ◽  
Mats Lilja ◽  
...  

1992 ◽  
Vol 267 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Miranda D. Grounds ◽  
Kerryn L. Garrett ◽  
May C. Lai ◽  
Woodring E. Wright ◽  
Manfred W. Beilharz

Sign in / Sign up

Export Citation Format

Share Document