fusion competent myoblasts
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Development ◽  
2013 ◽  
Vol 140 (6) ◽  
pp. 1370-1371
Author(s):  
S. Haralalka ◽  
C. Shelton ◽  
H. N. Cartwright ◽  
E. Katzfey ◽  
E. Janzen ◽  
...  

2012 ◽  
Vol 126 (1) ◽  
pp. 360-372 ◽  
Author(s):  
Balasankara Reddy Kaipa ◽  
Huanjie Shao ◽  
Gritt Schäfer ◽  
Tatjana Trinkewitz ◽  
Verena Groth ◽  
...  

Development ◽  
2011 ◽  
Vol 138 (8) ◽  
pp. 1551-1562 ◽  
Author(s):  
S. Haralalka ◽  
C. Shelton ◽  
H. N. Cartwright ◽  
E. Katzfey ◽  
E. Janzen ◽  
...  

Development ◽  
2009 ◽  
Vol 136 (7) ◽  
pp. 1159-1168 ◽  
Author(s):  
C. Shelton ◽  
K. S. Kocherlakota ◽  
S. Zhuang ◽  
S. M. Abmayr

2006 ◽  
Vol 26 (4) ◽  
pp. 1414-1423 ◽  
Author(s):  
Hong Duan ◽  
Hanh T. Nguyen

ABSTRACT Skeletal muscle formation in Drosophila melanogaster requires two types of myoblasts, muscle founders and fusion-competent myoblasts. Lame duck (Lmd), a member of the Gli superfamily of transcription factors, is essential for the specification and differentiation of fusion-competent myoblasts. We report herein that appropriate levels of active Lmd protein are attained by a combination of posttranscriptional mechanisms. We provide evidence that two different regions of the Lmd protein are critical for modulating the balance between its nuclear translocation and its retention within the cytoplasm. Activation of the Lmd protein is also tempered by posttranslational modifications of the protein that do not detectably change its subcellular localization. We further show that overexpression of Lmd protein derivatives that are constitutively nuclear or hyperactive results in severe muscle defects. These findings underscore the importance of regulated Lmd protein activity in maintaining proper activation of downstream target genes, such as Mef2, within fusion-competent myoblasts.


2005 ◽  
Vol 169 (6) ◽  
pp. 909-920 ◽  
Author(s):  
Sree Devi Menon ◽  
Zalina Osman ◽  
Kho Chenchill ◽  
William Chia

In Drosophila, myoblasts are subdivided into founders and fusion-competent myoblasts (fcm) with myotubes forming through fusion of one founder and several fcm. Duf and rolling pebbles 7 (Rols7; also known as antisocial) are expressed in founders, whereas sticks and stones (SNS) is present in fcm. Duf attracts fcm toward founders and also causes translocation of Rols7 from the cytoplasm to the fusion site. We show that Duf is a type 1 transmembrane protein that induces Rols7 translocation specifically when present intact and engaged in homophilic or Duf–SNS adhesion. Although its membrane-anchored extracellular domain functions as an attractant and is sufficient for the initial round of fusion, subsequent fusions require replenishment of Duf through cotranslocation with Rols7 tetratricopeptide repeat/coiled-coil domain-containing vesicles to the founder/myotube surface, causing both Duf and Rols7 to be at fusion sites between founders/myotubes and fcm. This implicates the Duf–Rols7 positive feedback loop to the occurrence of fusion at specific sites along the membrane and provides a mechanism by which the rate of fusion is controlled.


Development ◽  
2002 ◽  
Vol 129 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Mar Ruiz-Gómez ◽  
Nikola Coutts ◽  
Maximiliano L. Suster ◽  
Matthias Landgraf ◽  
Michael Bate

We report a new gene, myoblasts incompetent, essential for normal myogenesis and myoblast fusion in Drosophila. myoblasts incompetent encodes a putative zinc finger transcription factor related to vertebrate Gli proteins and to Drosophila Cubitus interruptus. myoblasts incompetent is expressed in immature somatic and visceral myoblasts. Expression is predominantly in fusion-competent myoblasts and a loss-of-function mutation in myoblasts incompetent leads to a failure in the normal differentiation of these cells and a complete lack of myoblast fusion. In the mutant embryos, founder myoblasts differentiate normally and form mononucleate muscles, but genes that are specifically expressed in fusion-competent cells are not activated and the normal downregulation of twist expression in these cells fails to occur. In addition, fusion-competent myoblasts fail to express proteins characteristic of the general pathway of myogenesis such as myosin and Dmef2. Thus myoblasts incompetent appears to function specifically in the general pathway of myogenesis to control the differentiation of fusion-competent myoblasts.


Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 5061-5073 ◽  
Author(s):  
Annette Rau ◽  
Detlev Buttgereit ◽  
Anne Holz ◽  
Richard Fetter ◽  
Stephen K. Doberstein ◽  
...  

Mutations in the rolling pebbles (rols) gene result in severe defects in myoblast fusion. Muscle precursor cells are correctly determined, but myogenesis does not progress significantly beyond this point because recognition and/or cell adhesion between muscle precursor cells and fusion-competent myoblasts is disturbed. Molecular analysis of the rols genomic region reveals two variant transcripts of rols due to different transcription initiation sites, rols6 and rols7. rols6 mRNA is detectable mainly in the endoderm during differentiation as well as in malpighian tubules and in the epidermis. By contrast, rols7 expression is restricted to the mesoderm and later to progenitor descendants during somatic and pharyngeal muscle development. Transcription starts at the extended germ band stage when progenitor/founder cells are determined and persists until stage 13. The proteins encoded by the rols gene are 1670 (Rols6) and 1900 (Rols7) amino acids in length. Both forms contain an N-terminal RING-finger motif, nine ankyrin repeats and a TPR repeat eventually overlaid by a coiled-coil domain. The longer protein, Rols7, is characterized by 309 unique N-terminal amino acids, while Rols6 is distinguishable by 79 N-terminal amino acids. Expression of rols7 in muscle founder cells indicates a function of Rols7 in these cells. Transplantation assays of rols mutant mesodermal cells into wild-type embryos show that Rols is required in muscle precursor cells and is essential to recruit fusion-competent myoblasts for myotube formation.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4489-4500 ◽  
Author(s):  
Hong Duan ◽  
James B. Skeath ◽  
Hanh T. Nguyen

A hallmark of mature skeletal muscles is the presence of multinucleate muscle fibers. In Drosophila, the formation of muscle syncytia requires the cooperative participation of two types of myoblasts, founder cells and fusion-competent myoblasts. We show that a newly identified gene, lame duck (lmd), has an essential regulatory role in the specification and function of fusion-competent myoblasts. Embryos that lack lmd function show a loss of expression of two key differentiation and fusion genes, Mef2 and sticks-and-stones, in fusion-competent myoblasts and are completely devoid of multinucleate muscle fibers. By contrast, founder cells are specified and retain their capability to differentiate into mononucleate muscle cells. lmd encodes a novel member of the Gli superfamily of transcription factors and is expressed in fusion-competent myoblasts and their precursors in a Wingless- and Notch-dependent manner. The activity of the Lmd protein appears to be additionally controlled by its differential cytoplasmic versus nuclear localization. Results from an independent molecular screen for binding factors to a myoblast-specific Mef2 enhancer further demonstrate that Lmd is a direct transcriptional regulator of Mef2 in fusion-competent myoblasts.


Sign in / Sign up

Export Citation Format

Share Document