Early Learning and its Effect on Population Structure. Studies of a Wild Population of Snow Geese

2010 ◽  
Vol 46 (4) ◽  
pp. 344-358 ◽  
Author(s):  
F. Cooke
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Philip Murunga ◽  
Grace Moraa Kennedy ◽  
Titus Imboma ◽  
Phillista Malaki ◽  
Daniel Kariuki ◽  
...  

We analyzed variations in 90 mitochondrial DNA (mtDNA) D-loop and heat shock protein 70 (HSP70) gene sequences from four populations of domesticated helmeted Guinea fowls (70 individuals) and 1 population of wild helmeted Guinea fowls (20 individuals) in Kenya in order to get information about their origin, genetic diversity, and traits associated with heat stress. 90 sequences were assigned to 25 distinct mtDNA and 4 HSP70 haplotypes. Most mtDNA haplotypes of the domesticated helmeted Guinea fowls were grouped into two main haplogroups, HgA and HgB. The wild population grouped into distinct mtDNA haplogroups. Two mtDNA haplotypes dominated across all populations of domesticated helmeted Guinea fowls: Hap2 and Hap4, while the dominant HSP70 haplotype found in all populations was CGC. Higher haplotype diversities were generally observed. The HSP70 haplotype diversities were low across all populations. The nucleotide diversity values for both mtDNA and HSP70 were generally low. Most mtDNA genetic variations occurred among populations for the three hierarchical categories considered while most variations in the HSP70 gene occurred among individuals within population. The lack of population structure among the domestic populations could suggest intensive genetic intermixing. The differentiation of the wild population may be due to a clearly distinct demographic history that shaped its genetic profile. Analysis of the Kenyan Guinea fowl population structure and history based on mtDNA D-loop variations and HSP70 gene functional polymorphisms complimented by archaeological and linguistic insight supports the hypothesis that most domesticated helmeted Guinea fowls in Kenya are related to the West African domesticated helmeted Guinea fowls. We recommend more molecular studies on this emerging poultry species with potential for poverty alleviation and food security against a backdrop of climate change in Africa.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11702
Author(s):  
Shikai Guan ◽  
Qian Song ◽  
Jinye Zhou ◽  
Haixia Yan ◽  
Yuxiang Li ◽  
...  

Background The wishbone flower or Torenia fournieri Lind., an annual from tropical Indochina and southern China, is a popular ornamental plant, and many interspecific (T. fournieri × T. concolor) hybrid lines have been bred for the international market. The cultivated lines show a pattern of genetic similarity that correlates with floral color which informs on future breeding strategies. This study aimed to perform genetic analysis and population structure of cultivated hybrid lines comparing with closely related T. concolor wild populations. Methods We applied the retrotransposon based iPBS marker system for genotyping of a total of 136 accessions from 17 lines/populations of Torenia. These included 15 cultivated lines of three series: Duchess (A, B, C); Kauai (D, E, F, G, H, I, J); Little Kiss (K, L, M, N, P) and two wild T. concolor populations (Q and R). PCR products from each individual were applied to estimate the genetic diversity and differentiation between lines/populations. Results Genotyping results showed a pattern of genetic variation differentiating the 17 lines/populations characterized by their specific floral colors. The final PCoA analysis, phylogenetic tree construction, and Bayesian population structural bar plot all showed a clear subdivision of lines/populations analysed. The 15 cultivated hybrid lines and the wild population Q that collected from a small area showed the lowest genetic variability while the other wild population R which sampled from a larger area had the highest genetic variability. Discussion The extremely low genetic variability of 15 cultivated lines indicated that individual line has similar reduction in diversity/heterozygosity from a bottleneck event, and each retained a similar (but different from each other) content of the wild genetic diversity. The genetic variance for the two wild T. concolor populations could be due to our varied sampling methods. The two wild populations (Q, R) and the cultivated hybrid lines (I, K, M, N, P) are genetically more closely related, but strong positive correlations presented in cultivated lines A, C, E, M, and N. These results could be used to guide future Torenia breeding. Conclusions The genetic variation and population structure found in our study showed that cultivated hybrid lines had similar reduction in diversity/heterozygosity from a bottleneck event and each line retained a similar (but different from each other) content of the wild genetic diversity, especially when strong phenotypic selection of floral color overlaps. Generally, environmental factors could induce transposon activation and generate genetic variability which enabled the acceleration of the evolutionary process of wild Torenia species. Our study revealed that wild Torenia populations sampled from broad geographic region represent stronger species strength with outstanding genetic diversity, but selective breeding targeting a specific floral color decreased such genetic variability.


1993 ◽  
Vol 71 (11) ◽  
pp. 2275-2281 ◽  
Author(s):  
Iwona M. Pawlina ◽  
David A. Boag ◽  
Frank E. Robinson

The population structure and changes in body mass and body composition of mallards wintering on the North Saskatchewan River in Edmonton, Alberta, were investigated from November 20, 1989 to March 15, 1990. The age composition of the population was biased in favor of juveniles (84%) and in favor of males (71%), possibly because of differential emigration at the onset of winter. Ducks in the wild population lost 22–30% of their live mass over winter. On average, males lost 75–76% of body lipids and 24–29% of proteins. Females lost between 66 and 92% of body lipids and between 18 and 23% of proteins. These losses suggested that mallards wintering in Edmonton in 1989–1990 were insufficiently prepared to meet the energy demands of spring migration and reproduction. Moreover, neither sex was able to maintain the level of protein intake needed to meet the protein costs of molt.


Ecoscience ◽  
1994 ◽  
Vol 1 (4) ◽  
pp. 311-316 ◽  
Author(s):  
Evgeny V. Syroechkovsky ◽  
Fred Cooke ◽  
William J. L. Sladen

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252792
Author(s):  
Maria Miguel Castro ◽  
Daniela Rosa ◽  
Ana M. Ferro ◽  
Ana Faustino ◽  
Ana Paulino ◽  
...  

Cynara cardunculus L. is a cardoon species native to the Mediterranean region, which is composed of three botanical taxa, each having distinct biological characteristics. The aim of this study was to examine wild populations of C. cardunculus established in Portugal, in order to determine their genetic diversity, geographic distribution, and population structure. Based on SSR markers, 121 individuals of C. cardunculus from 17 wild populations of the Portuguese Alentejo region were identified and analysed. Ten SSRs were found to be efficient markers in the genetic diversity analysis. The total number of alleles ranged from 9 to 17 per locus. The expected and observed means in heterozygosity, by population analysed, were 0.591 and 0.577, respectively. The wild population exhibited a high level of genetic diversity at the species level. The highest proportion of genetic variation was identified within a geographic group, while variation was lower among groups. Geographic areas having highest genetic diversity were identified in Alvito, Herdade da Abóboda, Herdade da Revilheira and Herdade de São Romão populations. Moreover, significant genetic differentiation existed between wild populations from North-Alentejo geographic locations (Arraiolos, Évora, Monte da Chaminé) and Centro Hortofrutícola, compared with other populations. This study reports genetic diversity among a representative number of wild populations and genotypes of C. cardunculus from Portugal. These results will provide valuable information towards future management of C. cardunculus germplasm.


Sign in / Sign up

Export Citation Format

Share Document