Recombinant human granulocyte colony-stimulating factor therapy for cyclic neutropenia associated with common variable immunodeficiency

1993 ◽  
Vol 35 (2) ◽  
pp. 124-126 ◽  
Author(s):  
MASAHIKO TSUDA ◽  
TATSUHIKO URAKAMI ◽  
SHUICHIRO WATANABE ◽  
HISASHI SHIMIZU ◽  
ICHIRO INANA ◽  
...  
2009 ◽  
Vol 45 (2) ◽  
pp. 110-111 ◽  
Author(s):  
Koichi Sugunoto ◽  
Atsushi Togawal ◽  
Kohei Miyazono ◽  
Katsuro Itoh ◽  
Masamichi Amano ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 931-939 ◽  
Author(s):  
T Valerius ◽  
R Repp ◽  
TP de Wit ◽  
S Berthold ◽  
E Platzer ◽  
...  

Abstract Three different classes of Fc receptors for IgG (Fc gamma R) are currently distinguished in humans, of which polymorphonuclear phagocytes (PMN) normally express both low-affinity receptor classes-- Fc gamma RII (CD32) and Fc gamma RIII (CD16). During therapy with granulocyte colony-stimulating factor (G-CSF), neutrophils from patients with various malignancies and different hematologic disorders were found to additionally express high levels of the receptor with high affinity for IgG (Fc gamma RI; CD64). For these patients, the relative fluorescence intensity (rFI) for Fc gamma RI was 5.3 (range, 1.7 to 10.3; n = 19), compared with 1.0 (range, 1.0 to 1.1; n = 8) for healthy donors. The expression of Fc gamma RI during G-CSF therapy could be confirmed by using a panel of six CD64-specific antibodies, and by showing mRNA for Fc gamma RI. So far, three genes for Fc gamma RI have been identified, encoding four distinct transcription products. By reverse transcriptase-polymerase chain reaction technology, transcripts for both membrane-associated isoforms (hFc gamma RIa and hFc gamma RIb2) could be detected. The functional activity of Fc gamma RI on PMN during G-CSF therapy was shown by measuring binding of monomeric human IgG and antibody-dependent cellular cytotoxicity (ADCC). Thus, Fc gamma RI-positive neutrophils displayed enhanced ADCC activity to glioma (A1207), squamous cell (A431), and ovarian (SK-ov3) carcinoma cell lines. The involvement of Fc gamma RI in this increased cytotoxic activity was shown by blocking Fc gamma receptors with monoclonal antibodies, and by using F(ab')2 x F(ab')2-bispecific antibodies with specificities against tumor-related antigens and Fc gamma RI, resulting in solely Fc gamma RI-mediated cytotoxicity. Therapeutically, this additional Fc receptor on PMN may increase the efficacy of experimental antibody therapy.


Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


Biotherapy ◽  
1991 ◽  
Vol 3 (4) ◽  
pp. 297-307 ◽  
Author(s):  
Kunitake Hirashima ◽  
Yataro Yoshida ◽  
Shigetaka Asano ◽  
Fumimaro Takaku ◽  
Mitsuhiro Omine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document