scholarly journals Hematopoietic progenitors in cyclic neutropenia: effect of granulocyte colony-stimulating factor in vivo

Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.

Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2736-2744 ◽  
Author(s):  
Andrew W. Roberts ◽  
Simon Foote ◽  
Warren S. Alexander ◽  
Clare Scott ◽  
Lorraine Robb ◽  
...  

Abstract The mechanisms involved in the mobilization of progenitor cells into the blood by granulocyte colony-stimulating factor (G-CSF ) and other cytokines are poorly understood. To identify important influences on this complex process, in vivo murine models were used. Granulocyte-macrophage colony-stimulating factor (GM-CSF ) transgenic, Max41 transgenic, W/WV, Mpl-null, GM-CSF receptor (β chain)-null mice, wild-type littermate controls, and six inbred strains of mice were injected with 200 μg/kg/d G-CSF for 5 days. Three parameters of response were monitored: white blood cell count (WCC), peripheral blood progenitor cell (PBPC) numbers, and spleen weight. In all genotypes studied, G-CSF induced increases in these three parameters. However, PBPC mobilization in W/WV and Mpl-null mice was only 30% and 9%, respectively, of that observed in wild-type mice. In contrast, perturbations of GM-CSF signalling had no demonstrable effect on in vivo responses to G-CSF. Broad variability was evident between inbred strains for each parameter of the response to G-CSF. A 10-fold range in response was observed for circulating progenitor cell numbers, similar to that observed for normal human subjects receiving G-CSF. The interstrain differences were in the distribution of mature and progenitor cells between peripheral blood, bone marrow, and spleen rather than in the total numbers of these cells in the body. Results of an F2 intercross of low-responding C57BL/6 and intermediate-responding SJL mice indicated that regulation of progenitor cell mobilization is a complex genetic trait, that there is a correlation between this trait and WCC response (r2 = .5), and that this approach may serve as a useful model for the identification of genes involved in the mobilization process.


Blood ◽  
1990 ◽  
Vol 75 (9) ◽  
pp. 1788-1793 ◽  
Author(s):  
M Okabe ◽  
M Asano ◽  
T Kuga ◽  
Y Komatsu ◽  
M Yamasaki ◽  
...  

About 100 derivatives of human recombinant granulocyte colony- stimulating factor (rhG-CSF) were created by various gene-mutagenic techniques, and KW-2228, in which amino acids were replaced at five positions of N-terminal region of intact rhG-CSF, was picked up and evaluated for its biologic and physicochemical properties in comparison with intact rhG-CSF. KW-2228 showed two to four times higher specific activity than that of intact rhG-CSF in mouse and/or human bone marrow progenitor cells by colony-forming unit assay in soft agar, and by cell- proliferation assay in liquid culture. KW-2228 showed a potency to increase peripheral neutrophil counts when it was administered to normal C3H/He mice by single intravenous injection. Increase of total leukocyte count and neutrophils was observed, with peak level at 8 to 12 hours at low doses (0.5 to 1.0 micrograms/mouse), and the highest level was maintained for 24 to 30 hours at high doses (5 to 10 micrograms/mouse). The granulopoietic effect of KW-2228 was examined by several doses of single course (once daily for 10 days) or multiple courses (twice daily injection for 5 days followed by cessation for 9 days on one cycle, 3 cycles in total) of treatment. KW-2228 showed higher activity than that of rhG-CSF, especially at sub-optimal doses of multiple courses of treatment. Furthermore, KW-2228 was found to be more stable physicochemically and biologically than intact rhG-CSF, especially under thermal conditions at 56 degrees C and in the human plasma at 37 degrees C, suggesting a protease resistancy. Pharmacokinetic study showed that plasma concentration of KW-2228 assayed for its bioactivity maintained a higher level than that of intact rhG-CSF for 60 minutes after intravenous injection of this protein to normal mice. Those results suggest that KW-2228 might show a superior in vivo hematopoietic effect to intact rhG-CSF due to its high specific activity to progenitor cells, and also due to its improved physicochemical, biologic, and pharmacokinetic stability in host animals.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1954-1962 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
IK McNiece ◽  
ES Yi ◽  
CP Alzona ◽  
...  

Abstract Recombinant rat stem cell factor (rrSCF) and recombinant human granulocyte colony-stimulating factor (G-CSF) coinjected for 1 week in rats cause a synergistic increase in mature marrow neutrophils accompanied by a striking decrease in erythroid and lymphoid marrow elements. The spleens of the same rats show increased granulopoiesis as well as increased erythropoiesis as compared with the spleens of rats treated with either growth factor alone. Splenic extramedullary erythropoiesis may act to compensate for the decrease in marrow erythropoiesis. The coinjection of rrSCF and G-CSF causes an increase in marrow mast cells at the end of 1 week, but the increase is much less than in rrSCF-alone-treated rats. The combination of rrSCF and G- CSF increases the rate of release of marrow neutrophils into the circulation and causes a dramatic synergistic peripheral neutrophilia, beginning especially after 4 days of treatment. Colony-forming assays of all experimental groups showed a synergistic increase in colony- forming unit granulocyte-macrophage (CFU-GM) in the marrow, but not in peripheral blood, after coincubation with SCF plus granulocyte- macrophage CSF (GM-CSF) as opposed to GM-CSF alone, showing anatomic compartmentalization between a more primitive marrow CFU-GM subset and a more mature peripheral blood CFU-GM subset. In vivo daily administration of SCF plus GM-CSF results in a synergistic increase in marrow neutrophils, but not the striking synergistic increase in circulating neutrophils that is observed with SCF plus G-CSF.


2015 ◽  
Vol 88 (4) ◽  
pp. 468-472 ◽  
Author(s):  
Sînziana Cetean ◽  
Călin Căinap ◽  
Anne-Marie Constantin ◽  
Simona Căinap ◽  
Alexandra Gherman ◽  
...  

Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein, the second CSF, sharing some common effects with granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5). G-CSF is mainly produced by fibroblasts and endothelial cells from bone marrow stroma and by immunocompetent cells (monocytes, macrophages). The receptor for G-CSF (G-CSFR) is part of the cytokine and hematopoietin receptor superfamily and G-CSFR mutations cause severe congenital neutropenia.The main action of G-CSF - G-CSFR linkage is stimulation of the production, mobilization, survival and chemotaxis of neutrophils, but there are many other G-CSF effects: growth and migration of endothelial cells, decrease of norepinephrine reuptake, increase in osteoclastic activity and decrease in osteoblast activity.In oncology, G-CSF is utilized especially for the primary prophylaxis of chemotherapy-induced neutropenia, but it can be used for hematopoietic stem cell transplantation, it can produce monocytic differentiation of some myeloid leukemias and it can increase some drug resistance.The therapeutic indications of G-CSF are becoming more and more numerous: non neutropenic patients infections, reproductive medicine, neurological disturbances, regeneration therapy after acute myocardial infarction and of skeletal muscle, and hepatitis C therapy.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1031-1038 ◽  
Author(s):  
I. Nishijima ◽  
T. Nakahata ◽  
S. Watanabe ◽  
K. Tsuji ◽  
I. Tanaka ◽  
...  

Abstract Using a clonal assay of bone marrow (BM) cells from transgenic mice (Tg-mice) expressing the human granulocyte-macrophage colony-stimulating factor receptor (hGM-CSFR), we found in earlier studies that hGM-CSF alone supported the development not only of granulocyte-macrophage colonies, but also of erythrocytes, megakaryocytes, mast cells, blast cells, and mixed hematopoietic colonies. In this report, we evaluated the in vivo effects of hGM-CSF on hematopoietic and lymphopoietic responses in the hGM-CSFR Tg-mice. Administration of this factor to Tg-mice resulted in dose-dependent increases in numbers of reticulocytes and white blood cells (WBCs) in the peripheral blood. Morphological analysis of WBCs showed that the numbers of all types of the cell, including neutrophils, eosinophils, monocytes, and lymphocytes increased; the most remarkable being in lymphocytes that contained a number of large granular lymphocytes (LGLs) in addition to mature T and B cells. However, total cellularity of the BM of the Tg-mice decreased in a dose-dependent manner when hGM-CSF was injected. In sharp contrast to the BM, spleens of the Tg-mice were grossly enlarged. Although all types of blood cells and hematopoietic progenitors increased in the spleen, erythroid cells and their progenitors showed the most significant increase. Increased numbers of megakaryocytes and LGLs were also observed in spleen and liver of the treated Tg-mice. Flow cytometric analysis showed that LGLs expanded in Tg-mice expressed Mac-1+CD3−NK1.1+. The thymus of Tg-mice treated with hGM-CSF exhibited a dose-dependent shrinkage and a remarkable decrease in CD4+CD8+ cells. Thus, hGM-CSF stimulated not only myelopoiesis but also erythropoiesis and megakaryopoiesis of hGM-CSFR Tg-mice in vivo, in accordance with our reported in vitro findings. In addition, hGM-CSF affected the development of lymphoid cells, including natural killer cells of these Tg-mice.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1720-1723 ◽  
Author(s):  
RA Briddell ◽  
CA Hartley ◽  
KA Smith ◽  
IK McNiece

Abstract Splenectomized mice treated for 7 days with pegylated recombinant rat stem cell factor (rrSCF-PEG) showed a dose-dependent increase in peripheral blood progenitor cells (PBPC) that have enhanced in vivo repopulating potential. A dose of rrSCF-PEG at 25 micrograms/kg/d for 7 days produced no significant increase in PBPC. However, when this dose of rrSCF-PEG was combined with an optimal dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF; 200 micrograms/kg/d), a synergistic increase in PBPC was observed. Compared with treatment with rhG-CSF alone, the combination of rrSCF-PEG plus rhG-CSF resulted in a synergistic increase in peripheral white blood cells, in the incidence and absolute numbers of PBPC, and in the incidence and absolute numbers of circulating cells with in vivo repopulating potential. These data suggest that low doses of SCF, which would have minimal, if any, effects in vivo, can synergize with optimal doses of rhG-CSF to enhance the mobilization of PBPC stimulated by rhG-CSF alone.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3500-3506 ◽  
Author(s):  
C Berthou ◽  
JP Marolleau ◽  
C Lafaurie ◽  
A Soulie ◽  
L Dal Cortivo ◽  
...  

Granzyme B and perforin are cytoplasmic granule-associated proteins used by cytotoxic T lymphocytes and natural killer (NK) cells to kill their targets. However, granzyme B gene expression has also been detected in a non-cytotoxic hematopoietic murine multipotent stem cell line, FDCP-Mix. The objective of the present study was to investigate whether granzyme B and perforin could be expressed in human hematopoietic CD34+ cells and if present, discover what their physiologic relevance could be. The primitive CD34+ human cell line KG1a was investigated first and was found to express granzyme B and perforin. Highly purified hematopoietic stem/progenitor cells were then selected using the CD34 surface antigen as marker. Steady-state bone marrow (BM) CD34+ cells did not contain these proteins. Peripheral blood (PB) CD34+ cells, which had been induced to circulate, were also analyzed. After chemotherapy (CT) and granulocyte colony-stimulating factor (G-CSF) treatment, CD34+ cells strongly expressed mRNAs and proteins of granzyme B and perforin. In contrast, CD34+ cells mobilized by G-CSF alone were negative. Western blot analysis further showed that granzyme B and perforin proteins were identical in CD34+ cells and activated PBLs. Such proteins might be implicated in the highly efficient migration of CD34+ stem/progenitor cells from BM to PB after CT and G-CSF treatment. The cellular adhesion mechanisms involved in the BM homing of CD34+ cells are disrupted at least temporarily after CT. The Asp-ase proteolytic activity of granzyme B on extracellular matrix proteins could be used by progenitor cells for their rapid detachment from BM stromal cells and perforin might facilitate their migration across the endothelial cell barrier.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1272-1272
Author(s):  
Akiko Kimura ◽  
Michael A. Rieger ◽  
WeiPing Chen ◽  
James M. Simmon ◽  
Gertraud Robinson ◽  
...  

Abstract Neutrophils, one kind of granulocytes, are the most abundant type of white blood cells in human peripheral blood and form an integral part of the immune system. In addition, the majority of acute myelogeneous leukemia (AML) cells are from the granulocyte lineage. Granulocyte-colony stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) control migration, proliferation and survival of granulocytes. G-CSF and GM-CSF activate the transcription factors STAT5A/B (STAT5), which are essential for the development of T and B cells and the erythroid lineage. However, it is not clear to what extent G-CSF or GM-CSF signaling through STAT5 controls the differentiation, proliferation, survival in granulocyte lineage. STAT5 is not only essential for normal development and its constitutive activation has been linked to AML patients with Flt3 mutations. The objective of this study was to explore the contribution of STAT5 in G-CSF- and GM-CSF-induced granulopoiesis and to elucidate the underlying molecular mechanisms. Towards this goal, the Stat5a/b genes were deleted in mouse hematopoietic stem cells in vivo using Cre-loxP-mediated recombination (mutant mice). Injection of 5-FU resulted in a cytokine storm, which in controls, but not in mutant mice, led to a 10-fold elevation of neutrophils. Strikingly, the distribution of myeloid progenitor populations in bone marrow was not altered in STAT5-null animals in homeostasis. Colony assays were performed to address which cytokine controls granulopoiesis from these progenitors. While common multipotent progenitor cells (CMPs) and granulocyte macrophage progenitor cells (GMPs) from control mice formed large colonies in the presence of GM-CSF, mutant cells responded poorly. No difference between control and mutant colonies was observed in the presence of G-CSF. To investigate GM-CSF-mediated survival, apoptosis-assays were performed with peritoneal neutrophils. Greatly elevated apoptosis was observed with STAT5-null neutrophils. To further dissect the contribution of apoptosis and/or proliferation in the observed defects, long-term time-lapse imaging and single cell tracking was applied. Control and STAT5-null GMPs were cultured with GM-CSF and individual cells and all their progeny were continuously observed for 5 generations. Despite an equal number of initial GMPs responding to GM-CSF, the generation time of STAT5-null GMP-derived progeny was significantly prolonged in each generation and the number of cell death events increased dramatically from generation to generation. Therefore, GM-CSF-mediated STAT5 signaling is necessary to generate high numbers of granulocytic cells from GMPs by providing pro-survival and pro-proliferation signals. To identify GM-CSF-mediated and STAT5-dependent genetic cascades that control proliferation and survival of the granulocyte lineage, we performed gene expression profiling and ChIP-seq of control and STAT5-null CMPs, GMPs and neutrophils. STAT5 target genes specific to CMPs, GMPs and neutrophils were identified and their contribution to normal granulopoiesis is currently being investigated.


Sign in / Sign up

Export Citation Format

Share Document