Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins

2007 ◽  
Vol 9 (10) ◽  
pp. 2372-2380 ◽  
Author(s):  
Vitor B. Pinheiro ◽  
David J. Ellar
1998 ◽  
Vol 64 (8) ◽  
pp. 3029-3035 ◽  
Author(s):  
David J. Bowen ◽  
Jerald C. Ensign

ABSTRACT Photorhabdus luminescens is a gram-negative enteric bacterium that is found in association with entomopathogenic nematodes of the family Heterorhabditidae. The nematodes infect a variety of soil-dwelling insects. Upon entering an insect host, the nematode releases P. luminescens cells from its intestinal tract, and the bacteria quickly establish a lethal septicemia. When grown in peptone broth, in the absence of the nematodes, the bacteria produce a protein toxin complex that is lethal when fed to, or injected into the hemolymph of, Manduca sexta larvae and several other insect species. The toxin purified as a protein complex which has an estimated molecular weight of 1,000,000 and contains no protease, phospholipase, or hemolytic activity and only a trace of lipase activity. The purified toxin possesses insecticidal activity whether injected or given orally. Analyses of the denatured complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed it to be composed of several protein subunits ranging in size from 30 to 200 kDa. The complex was further separated by native gel electrophoresis into three components, two of which retained insecticidal activity. The purified native toxin complex was found to be active in nanogram concentrations against insects representing four orders of the classInsecta.


2011 ◽  
Vol 108 (51) ◽  
pp. 20544-20549 ◽  
Author(s):  
M. J. Landsberg ◽  
S. A. Jones ◽  
R. Rothnagel ◽  
J. N. Busby ◽  
S. D. G. Marshall ◽  
...  

Microbiology ◽  
2008 ◽  
Vol 154 (11) ◽  
pp. 3503-3517 ◽  
Author(s):  
Michelle C. Hares ◽  
Stewart J. Hinchliffe ◽  
Philippa C. R. Strong ◽  
Ioannis Eleftherianos ◽  
Andrea J. Dowling ◽  
...  

2019 ◽  
Author(s):  
Daniel Roderer ◽  
Felix Bröcker ◽  
Oleg Sitsel ◽  
Paulina Kaplonek ◽  
Franziska Leidreiter ◽  
...  

AbstractToxin complex (Tc) toxins are virulence factors widespread in insect and human bacterial pathogens. Tcs are composed of three subunits: TcA, TcB and TcC. TcA facilitates receptor-toxin interaction and membrane permeation, TcB and TcC form a toxin-encapsulating cocoon. While the mechanisms of holotoxin assembly and prepore-to-pore transition have been well-described, little is known about receptor binding and cellular uptake of Tcs. Here, we identify two classes of glycans, heparins/heparan sulfates and Lewis antigens, that act as receptors for different TcAs from insect- and human pathogenic bacteria. Glycan array screening and electron cryo microscopy (cryo-EM) structures reveal that all tested TcAs bind unexpectedly with their α-helical part of the shell domain to negatively charged heparins. In addition, TcdA1 from the insect-pathogen Photorhabdus luminescens binds to Lewis antigens with micromolar affinity. A cryo-EM structure of the TcdA1-Lewis X complex reveals that the glycan interacts with the receptor-binding domain D of the toxin. Our results suggest a two-step association mechanism of Tc toxins involving glycans on the surface of host cells.


2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Katharina Springer ◽  
Sandra Reuter ◽  
Mandy Knüpfer ◽  
Lukas Schmauder ◽  
Philipp-Albert Sänger ◽  
...  

ABSTRACTYersinia enterocoliticais a pathogen that causes gastroenteritis in humans. Because of its low-temperature-dependent insecticidal activity, it can oscillate between invertebrates and mammals as host organisms. The insecticidal activity of strain W22703 is associated with a pathogenicity island of 19 kb (Tc-PAIYe), which carries regulators and genes encoding the toxin complex (Tc). The island also harbors four phage-related and highly conserved genes of unknown functions, which are polycistronically transcribed. Two open reading frames showed significant homologies to holins and endolysins and exhibited lytic activity inEscherichia colicells upon overexpression. When a set ofYersiniastrains was tested in an equivalent manner, highly diverse susceptibilities to lysis were observed, and some strains were resistant to lysis. If cell lysis occurred (as demonstrated by membrane staining), it was more pronounced when two accessory elements of the cassette coding for an i-spanin and an o-spanin were included in the overexpression construct. The pore-forming function of the putative holin, HolY, was demonstrated by complementation of the lysis defect of a phage λ S holin mutant. In experiments performed with membrane preparations, ElyY exhibited high specificity for W22703 peptidoglycan, with a cleavage activity resembling that of lysozyme. Although the functionality of the lysis cassette from Tc-PAIYewas demonstrated in this study, its biological role remains to be elucidated.IMPORTANCEThe knowledge of how pathogens survive in the environment is pivotal for our understanding of bacterial virulence. The insecticidal and nematocidal activity ofYersiniaspp., by which the bacteria gain access to nutrients and thus improve their environmental fitness, is conferred by the toxin complex (Tc) encoded on a highly conserved pathogenicity island termed Tc-PAIYe. While the regulators and the toxin subunits of the island had been characterized in some detail, the role of phage-related genes within the island remained to be elucidated. Here, we demonstrate that this cassette encodes a holin, an endolysin, and two spanins that, at least upon overexpression, lyseYersiniastrains.


1998 ◽  
Vol 64 (8) ◽  
pp. 3036-3041 ◽  
Author(s):  
Michael Blackburn ◽  
Elena Golubeva ◽  
David Bowen ◽  
Richard H. Ffrench-Constant

ABSTRACT Photorhabdus luminescens is a bacterium which is mutualistic with entomophagous nematodes and which secretes high-molecular-weight toxin complexes following its release into the insect hemocoel upon nematode invasion. Thus, unlike other protein toxins from Bacillus thuringiensis (δ-endotoxins and Vip’s), P. luminescens toxin (Pht) normally acts from within the insect hemocoel. Unexpectedly, therefore, the toxin complex has both oral and injectable activities against a wide range of insects. We have recently fractionated the protein toxin and shown it to consist of several native complexes, the most abundant of which we have termed Toxin complex a (Tca). This complex is highly active against the lepidopteran Manduca sexta. In view of the difference in the normal mode of delivery of P. luminescenstoxin and the apparent communality in the histopathological effects of other gut-active toxins from B. thuringiensis, as well as cholesterol oxidase, we were interested in investigating the effects of purified Tca protein on larvae of M. sexta. Here we report that the histopathology of the M. sexta midgut is similar to that for other novel midgut-active toxins. Following oral ingestion of Tca by M. sexta, we observed an acceleration in the blebbing of the midgut epithelium into the gut lumen and eventual lysis of the epithelium. The midgut shows a similar histopathology following injection of Tca into the insect hemocoel. These results not only show that Tca is a highly active oral insecticide but also confirm the similar histopathologies of a range of very different gut-active toxins, despite presumed differences in modes of action and/or delivery. The implications for the mode of action of Tca are discussed.


2020 ◽  
Vol 191 (1) ◽  
pp. 191-200
Author(s):  
Li-Hsin Wu ◽  
Yu-Ting Wang ◽  
Feng-Chia Hsieh ◽  
Chienyan Hsieh

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 148 ◽  
Author(s):  
Rady Shawer ◽  
Irene Donati ◽  
Antonio Cellini ◽  
Francesco Spinelli ◽  
Nicola Mori

Drosophila suzukii causes considerable economic damage to small and thin-skinned fruits including cherry, blueberry, raspberry, grape and strawberry. Since it attacks fruits at the ripening stage, the use of chemical pesticides is limited due to the high risk of residues on fruit. Biological control is thus expected to play an essential role in managing this pest. The Gram-negative bacterium, Photorhabdus luminescens and its symbiotic Heterorhabditis spp. nematode have been shown to be highly pathogenic to insects, with a potential for replacing pesticides to suppress several pests. Insecticidal activity of P. luminescens at different bacterial cell concentrations and its cell-free supernatant were assessed against third-instar larvae and pupae of D. suzukii under laboratory conditions. P. luminescens suspensions had a significant oral and contact toxicity on D. suzukii larvae and pupae, with mortalities up to of 70–100% 10 days after treatment. Cell-free supernatant in the diet also doubled mortality rates of feeding larvae. Our results suggest that P. luminescens may be a promising candidate for biological control of D. suzukii, and its use in integrated pest management (IPM) programs is discussed.


2011 ◽  
Vol 47 (1) ◽  
pp. 6-12 ◽  
Author(s):  
G. N. Odinokov ◽  
G. A. Eroshenko ◽  
Ja. M. Krasnov ◽  
N. P. Guseva ◽  
V. V. Kutyrev

Sign in / Sign up

Export Citation Format

Share Document