glycan array
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Hung-Jen Wu ◽  
Akshi Singla ◽  
Joshua D. Weatherston
Keyword(s):  

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Mike Aoun ◽  
Xiaojie Cai ◽  
Bingze Xu ◽  
Gonzalo Fernandez Lahore ◽  
Michael Yi Bonner ◽  
...  

Animal models for complex diseases are needed to position and analyze the function of interacting genes. Previous positional cloning identified Ncf1 and Clec4b to be major regulators of arthritis models in rats. Here, we investigate epistasis between Ncf1 and Clec4b, two major regulators of arthritis in rats. We find that Clec4b and Ncf1 exert an additive effect on arthritis given by their joint ability to regulate neutrophils. Both genes are highly expressed in neutrophils, together regulating neutrophil availability and their capacity to generate reactive oxygen species. Using a glycan array, we identify key ligands of Clec4b and demonstrate that Clec4b-specific stimulation triggers neutrophils into oxidative burst. Our observations highlight Clec4b as an important regulator of neutrophils and demonstrate how epistatic interactions affect the susceptibility to, and severity of, autoimmune arthritis.


2021 ◽  
Author(s):  
Marcus J. Bolton ◽  
Jordan T. Ort ◽  
Ryan McBride ◽  
Nicholas J. Swanson ◽  
Jo Wilson ◽  
...  

Influenza viruses have circulated at very low levels during the COVID-19 pandemic, and population immunity against these viruses is low. Influenza virus cases have been increasing in the Northern Hemisphere involving an H3N2 strain (3C.2a1b.2a2) with a hemagglutinin (HA) that has several substitutions relative to the 2021-2022 H3N2 vaccine strain. Here, we show that one of these substitutions eliminates a key glycosylation site on HA and alters sialic acid binding. Using glycan array profiling, we show that the 3C.2a1b.2a2 H3 maintains binding to an extended bi-antennary sialoside and replicates to high titers in human airway cells. We found that antibodies elicited by the 2021-2022 Northern Hemisphere influenza vaccine poorly neutralize the new H3N2 strain. Together, these data indicate that 3C.2a1b.2a2 H3N2 viruses efficiently replicate in human cells and could potentially cause an antigenic mismatch if they continue to circulate at high levels during the 2021-2022 influenza season.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261082
Author(s):  
Jeffrey W. Brown ◽  
Koushik K. Das ◽  
Vasilios Kalas ◽  
Kiron M. Das ◽  
Jason C. Mills

Introduction Multiple previous studies have shown the monoclonal antibody Das-1 (formerly called 7E12H12) is specifically reactive towards metaplastic and carcinomatous lesions in multiple organs of the gastrointestinal system (e.g. Barrett’s esophagus, intestinal-type metaplasia of the stomach, gastric adenocarcinoma, high-grade pancreatic intraepithelial neoplasm, and pancreatic ductal adenocarcinoma) as well as in other organs (bladder and lung carcinomas). Beyond being a useful biomarker in tissue, mAb Das-1 has recently proven to be more accurate than current paradigms for identifying cysts harboring advanced neoplasia. Though this antibody has been used extensively for clinical, basic science, and translational applications for decades, its epitope has remained elusive. Methods In this study, we chemically deglycosylated a standard source of antigen, which resulted in near complete loss of the signal as measured by western blot analysis. The epitope recognized by mAb Das-1 was determined by affinity to a comprehensive glycan array and validated by inhibition of a direct ELISA. Results The epitope recognized by mAb Das-1 is 3’-Sulfo-Lewis A/C (3’-Sulfo-LeA/C). 3’-Sulfo-LeA/C is broadly reexpressed across numerous GI epithelia and elsewhere during metaplastic and carcinomatous transformation. Discussion 3’-Sulfo-LeA/C is a clinically important antigen that can be detected both intracellularly in tissue using immunohistochemistry and extracellularly in cyst fluid and serum by ELISA. The results open new avenues for tumorigenic risk stratification of various gastrointestinal lesions.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1854
Author(s):  
Federico M. Ruiz ◽  
Francisco J. Medrano ◽  
Anna-Kristin Ludwig ◽  
Herbert Kaltner ◽  
Nadezhda V. Shilova ◽  
...  

Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region.


2021 ◽  
Author(s):  
Zachary L Klamer ◽  
Chelsea M Harris ◽  
Jonathan M Beirne ◽  
Jessica E Kelly ◽  
Jian Zhang ◽  
...  

The volume and value of glycan-array data are increasing, but no common method and resource exists to analyze, integrate, and use the available data. To meet this need, we developed a resource of analyzed glycan-array data called CarboGrove. Building on the ability to process and interpret data from any type of glycan array, we populated the database with the results from 35 types of glycan arrays, 13 glycan families, 5 experimental methods, and 19 laboratories or companies. In meta-analyses of glycan-binding proteins, we observed glycan-binding specificities that were not uncovered from single sources. In addition, we confirmed the ability to efficiently optimize selections of glycan-binding proteins to be used in experiments for discriminating between closely related motifs. CarboGrove yields unprecedented access to the wealth of glycan-array data being produced and powerful capabilities for both experimentalists and bioinformaticians.


Author(s):  
Laura Morelli ◽  
Luigi Lay ◽  
Darielys Santana-Mederos ◽  
Yury Valdes-Balbin ◽  
Vicente Verez Bencomo ◽  
...  

2021 ◽  
Author(s):  
Taryn M. Lucas ◽  
Chitrak Gupta ◽  
Meghan O. Altman ◽  
Emi Sanchez ◽  
Matthew R. Naticchia ◽  
...  

ABSTRACTInfluenza A viruses (IAVs) exploit host glycans in airway epithelial mucosa to gain entry and initiate infection. Rapid detection of changes in IAV specificity towards host glycan classes can provide early indication of virus transmissibility and infection potential. IAVs use hemagglutinins (HA) to bind sialic acids linked to larger glycan structures and a switch in HA specificity from α2,3-to α2,6-linked sialoglycans is considered a prerequisite for viral transmission from birds to humans. While the changes in HA structure associated with the evolution of binding phenotype have been mapped, the influence of glycan receptor presentation on IAV specificity remains obscured. Here, we describe a glycan array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation in the mucinous glycocalyx, including glycan type and valency of the glycoconjugates and their surface density, impact IAV binding. We found that H1N1 virus produced in embryonated chicken eggs, which recognizes both receptor types, exclusively engaged mucin-mimetics carrying α2,3-linked sialic acids in their soluble form. The virus was able utilize both receptor structures when the probes were immobilized on the array; however, increasing density in the mucin-mimetic brush diminished viral adhesion. Propagation in mammalian cells produced a change in receptor pattern recognition by the virus, without altering its HA affinity, toward improved binding of α2,6-sialylated mucin mimetics and reduced sensitivity to surface crowding of the probes. Application of a support vector machine (SVM) learning algorithm as part of the glycan array binding analysis efficiently characterized this shift in binding preference and may prove useful to study the evolution of viral responses to a new host.


Sign in / Sign up

Export Citation Format

Share Document