Stability of Surface Rayleigh Waves in an Elastic Half-Space

2010 ◽  
Vol 124 (2) ◽  
pp. 179-211
Author(s):  
M. D. Rosini
1964 ◽  
Vol 54 (2) ◽  
pp. 627-679
Author(s):  
David G. Harkrider

ABSTRACT A matrix formulation is used to derive integral expressions for the time transformed displacement fields produced by simple sources at any depth in a multilayered elastic isotropic solid half-space. The integrals are evaluated for their residue contribution to obtain surface wave displacements in the frequency domain. The solutions are then generalized to include the effect of a surface liquid layer. The theory includes the effect of layering and source depth for the following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter source also includes the effect of fault dimensions and rupture velocity. From these results we are able to show certain reciprocity relations for surface waves which had been previously proved for the total displacement field. The theory presented here lays the ground work for later papers in which theoretical seismograms are compared with observations in both the time and frequency domain.


Discussion of the problem of an elastic half-space with spherical cavity is continued in respect of Rayleigh waves on the plane boundary. Displacements in the initial and first group of higher order Rayleigh waves are derived by using the time-harmonic solution developed in part I of this series with attention confined to the case of time-harmonic normal stress at the cavity. These are employed to find also the response to an exponential shock at the cavity and graphs are presented showing the surface motion due to the initial Rayleigh waves. Finally, in an appendix to the paper, some comments are given on a recent paper by R. D. Gregory on the problem of the half-space with cavity.


2017 ◽  
Vol 39 (4) ◽  
pp. 365-374
Author(s):  
Pham Chi Vinh ◽  
Tran Thanh Tuan ◽  
Le Thi Hue

This paper is concerned with the propagation of Rayleigh waves in an incompressible orthotropic elastic half-space coated with a thin incompressible orthotropic elastic layer. The main purpose of the paper is to establish an approximate formula for the Rayleigh wave H/V ratio (the ratio between the amplitudes of the horizontal and vertical displacements of Rayleigh waves at the traction-free surface of the layer). First, the relations between the traction amplitude vector and the displacement amplitude vector of Rayleigh waves at two sides of the interface between the layer and the half-space are created using the Stroh formalism and the effective boundary condition method. Then, an approximate formula for the Rayleigh wave H/V ratio of third-order in terms of dimensionless thickness of the layer has been derived by using these relations along with the Taylor expansion of the displacement amplitude vector of the thin layer at its traction-free surface. It is shown numerically that the obtained formula is a good approximate one. It can be used for extracting mechanical properties of thin films from measured values of the  Rayleigh wave H/V ratio.


1962 ◽  
Vol 52 (1) ◽  
pp. 27-36
Author(s):  
J. T. Cherry

Abstract The body waves and surface waves radiating from a horizontal stress applied at the free surface of an elastic half space are obtained. The SV wave suffers a phase shift of π at 45 degrees from the vertical. Also, a surface wave that is SH in character but travels with the Rayleigh velocity is shown to exist. This surface wave attenuates as r−3/2. For a value of Poisson's ratio of 0.25 or 0.33, the amplitude of the Rayleigh waves from a horizontal source should be smaller than the amplitude of the Rayleigh waves from a vertical source. The ratio of vertical to horizontal amplitude for the Rayleigh waves from the horizontal source is the same as the corresponding ratio for the vertical source for all values of Poisson's ratio.


Geophysics ◽  
1965 ◽  
Vol 30 (1) ◽  
pp. 97-101 ◽  
Author(s):  
W. A. Sorge

Measurements made on Rayleigh waves below the surface of a simulated elastic half‐space confirm in detail the behavior predicted by theory. These measurements, made by means of a two‐dimensional seismic model, show that the amplitude of the Rayleigh wave falls off rapidly with increasing depth.


Sign in / Sign up

Export Citation Format

Share Document