scholarly journals Development of high-level ceftazidime resistance via single-base substitutions of blaCTX-M-3 in hyper-mutable Escherichia coli

2006 ◽  
Vol 12 (8) ◽  
pp. 803-806 ◽  
Author(s):  
E. Karisik ◽  
M.J. Ellington ◽  
R. Pike ◽  
D.M. Livermore ◽  
N. Woodford
2020 ◽  
Vol 117 (46) ◽  
pp. 28572-28575
Author(s):  
Masayori Inouye ◽  
Risa Takino ◽  
Yojiro Ishida ◽  
Keiko Inouye

Among the 20 amino acids, three of them—leucine (Leu), arginine (Arg), and serine (Ser)—are encoded by six different codons. In comparison, all of the other 17 amino acids are encoded by either 4, 3, 2, or 1 codon. Peculiarly, Ser is separated into two disparate Ser codon boxes, differing by at least two-base substitutions, in contrast to Leu and Arg, of which codons are mutually exchangeable by a single-base substitution. We propose that these two different Ser codons independently emerged during evolution. In this hypothesis, at the time of the origin of life there were only seven primordial amino acids: Valine (coded by GUX [X = U, C, A or G]), alanine (coded by GCX), aspartic acid (coded by GAY [Y = U or C]), glutamic acid (coded by GAZ [Z = A or G]), glycine (coded by GGX), Ser (coded by AGY), and Arg (coded by CGX and AGZ). All of these were derived from GGX for glycine by single-base substitutions. Later in evolution, another class of Ser codons, UCX, were derived from alanine codons, GCX, distinctly different from the other primordial Ser codon, AGY. From the analysis of theEscherichia coligenome, we find extensive disparities in the usage of these two Ser codons, as some genes use only AGY for Ser in their genes. In contrast, others use only UCX, pointing to distinct differences in their origins, consistent with our hypothesis.


2002 ◽  
Vol 184 (24) ◽  
pp. 6866-6872 ◽  
Author(s):  
Joanna Klapacz ◽  
Ashok S. Bhagwat

ABSTRACT We showed previously that transcription in Escherichia coli promotes C · G-to-T · A transitions due to increased deamination of cytosines to uracils in the nontranscribed but not the transcribed strand (A. Beletskii and A. S. Bhagwat, Proc. Natl. Acad. Sci. USA 93:13919-13924, 1996). To study mutations other than that of C to T, we developed a new genetic assay that selects only base substitution mutations and additionally excludes C · G to T · A transitions. This novel genetic reversion system is based on mutations in a termination codon and involves positive selection for resistance to bleomycin or kanamycin. Using this genetic system, we show here that transcription from a strong promoter increases the level of non-C-to-T as well as C-to-T mutations. We find that high-level transcription increases the level of non-C-to-T mutations in DNA repair-proficient cells in three different sequence contexts in two genes and that the rate of mutation is higher by a factor of 2 to 4 under these conditions. These increases are not caused by a growth advantage for the revertants and are restricted to genes that are induced for transcription. In particular, high levels of transcription do not create a general mutator phenotype in E. coli. Sequence analysis of the revertants revealed that the frequency of several different base substitutions increased upon transcription of the bleomycin resistance gene and that G · C-to-T · A transversions dominated the spectrum in cells transcribing the gene. These results suggest that high levels of transcription promote many different spontaneous base substitutions in E. coli.


Genetics ◽  
1991 ◽  
Vol 129 (2) ◽  
pp. 317-326 ◽  
Author(s):  
R M Schaaper ◽  
R L Dunn

Abstract To gain more detailed insight into the nature and mechanisms of spontaneous mutations, we undertook a DNA sequence analysis of a large collection of spontaneous mutations in the N-terminal region of the Escherichia coli lacI gene. This region of circa 210 base pairs is the target for dominant lacI mutations (i-d) and is suitable for studies of mutational specificity since it contains a relatively high density of detectable mutable sites. Among 414 independent i-d mutants, 70.8% were base substitutions, 17.2% deletions, 7.7% additions and 4.3% single-base frameshifts. The base substitutions were both transitions (60%) and transversions (40%), the largest single group being G.C----A.T (47% of base substitutions). All four transversions were observed. Among the 71 deletions, a hotspot (37 mutants) was present: an 87-bp deletion presumably directed by an 8-bp repeated sequence at its endpoints. The remaining 34 deletions were distributed among 29 different mutations, either flanked (13/34) or not flanked (21/34) by repeated sequences. The 32 additions comprised 29 different events, with only two containing a direct repeat at the endpoints. The single-base frameshifts were the loss of a single base from either repeated (67%) or nonrepeated (33%) bases. A comparison with the spectrum obtained previously in strains defective in DNA mismatch correction (mutH, mutL, mutS strains) yielded information about the apparent efficiency of mismatch repair. The overall effect was 260-fold but varied substantially among different classes of mutations. An interesting asymmetry was uncovered for the two types of transitions, A.T----G.C and G.C----A.T being reduced by mismatch repair 1340- and 190-fold, respectively. Explanations for this asymmetry and its possible implications for the origins of spontaneous mutations are discussed.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Charles C. Traverse ◽  
Howard Ochman

ABSTRACT Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola, which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions—errors that potentially have more dire effects on protein function—is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions. Knowledge of the full extent of sequences subject to transcription indels supports a new model of bacterial transcription slippage, one that relies on the number of complementary bases between the transcript and the DNA template to which it slipped. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions—errors that potentially have more dire effects on protein function—is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions. Knowledge of the full extent of sequences subject to transcription indels supports a new model of bacterial transcription slippage, one that relies on the number of complementary bases between the transcript and the DNA template to which it slipped.


Sign in / Sign up

Export Citation Format

Share Document