scholarly journals Fine-root turnover patterns and their relationship to root diameter and soil depth in a14C-labeled hardwood forest

2006 ◽  
Vol 172 (3) ◽  
pp. 523-535 ◽  
Author(s):  
J. D. Joslin ◽  
J. B. Gaudinski ◽  
M. S. Torn ◽  
W. J. Riley ◽  
P. J. Hanson
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541d-541
Author(s):  
Christina Wells ◽  
David Eissenstat ◽  
Michael Glenn

Damage to the root system by soil insects and pathogenic fungi is difficult to assess and often goes unnoticed until a tree exhibits significant decline above ground. In this study, below-ground imaging technology was used to quantify fine root turnover in peach and to determine what percentage of root death may be caused by soil pests in an apparently healthy orchard. The study was conducted on six 15-year-old `Loring' peach trees on Halford rootstock in Kearneysville, W.Va. Five root observation tubes were placed in the soil beneath each tree in Apr. 1996. Each tube was randomly assigned one of five soil drench treatments: Lorsban 4E insecticide, Ridomil 2E fungicide, a combination of both pesticides, 1/10th strength Hoagland's solution, or water. A portable VCR and camera system were used to record images of fine roots (<1 mm diameter) growing along the tubes at biweekly intervals from May 1996 through Nov. 1997. The images were used to construct a database of life history information for more than 1500 individual roots. Peach root survivorship was influenced by root diameter and pesticide treatment. Fine roots on tubes receiving either of the pesticide treatments had higher survivorship than roots on control tubes for all diameter classes. The effect was most pronounced for white roots <0.5 mm in diameter, whose survivorship during the growing season was increased by 45% when both insecticide and fungicide were applied. These results suggest that a substantial fraction of fine root death may be caused by interactions with the soil fauna.


2013 ◽  
Vol 59 (3) ◽  
Author(s):  
Bohdan Konôpka ◽  
Jozef Pajtík ◽  
Miriam Maľová

AbstractFine roots (defined by a maximum diameter of 2 mm) and assimilatory organs are the compartments which rotate carbon much faster than any other tree part. We focused on quantification of fine roots in young European beech and Norway spruce trees growing under the same ecological conditions. Standing stock of fine roots was estimated by soil coring during 2009 - 2012. Fine root production was established by the in-growth bag method. Standing stock and productions of fine roots were comparable in both tree species. The quantity of fine root biomass (at a soil depth of 0 -50 cm) varied inter-annually between 6.08 and 7.41 t per ha in the beech and from 5.10 to 6.49 t per ha in the spruce stand. Annual production of fine roots (soil depth of 0 - 30 cm) was between 1.11 and 1.63 t ha-1 in beech and between 0.95 and 1.54 t.ha-1 in spruce. We found that fine root standing stock at the beginning of each growing season was related to climatic conditions in the previous year. Annual fine root production was influenced by the climatic situation of the current year. In general, a maximum standing stock of fine roots as well as a relatively slow fine root turnover is expected in young forest stands. Whereas production of fine roots prevailed over mortality in a favorable year (sufficiency of precipitations and slightly above-average temperatures in 2010), there was a reverse situation in an unfavorable year (drought episodes in 2011). We concluded that although both forest types represented contrasting turnovers of assimilatory organs (once a year and once in 5 years in beech and spruce respectively), fine root turnover rates were very similar (approx. once per four years).


2002 ◽  
Vol 32 (9) ◽  
pp. 1692-1697 ◽  
Author(s):  
Geraldine L Tierney ◽  
Timothy J Fahey

We examined fine root turnover using both the minirhizotron and radiocarbon methods within the organic horizon of a northern hardwood forest to better understand discrepancies in turnover estimates obtained using these methods. The recently developed radiocarbon method estimates the mean age of organic matter by comparing its radiocarbon content to recorded atmospheric radiocarbon levels, which peaked in the 1960s as a result of thermonuclear weapons testing. The radiocarbon content of fine roots harvested from minirhizotron tubes did not differ from that of roots collected from the soil, suggesting these two methods sampled the same population of fine roots. However, long-term observation of fine root survivorship using minirhizotrons showed that root age distribution is positively skewed, causing systematic overestimation of fine root turnover by the minirhizotron method and underestimation by the radiocarbon method. We developed a parametric regression model of fine root survivorship. Our estimate of fine root turnover (about 30% per year) using this variation of the minirhizotron method was supported by radiocarbon data considered in conjunction with fine root age distribution.


2021 ◽  
Author(s):  
Xuanshuai Liu ◽  
Junwei Zhao ◽  
Junying Liu ◽  
Weihua Lu ◽  
Chunhui Ma ◽  
...  

2010 ◽  
Vol 24 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Julia B. Gaudinski ◽  
M. S. Torn ◽  
W. J. Riley ◽  
T. E. Dawson ◽  
J. D. Joslin ◽  
...  

Trees ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 363-374 ◽  
Author(s):  
Xiaona Wang ◽  
Saki Fujita ◽  
Tatsuro Nakaji ◽  
Makoto Watanabe ◽  
Fuyuki Satoh ◽  
...  

2012 ◽  
Vol 362 (1-2) ◽  
pp. 357-372 ◽  
Author(s):  
I. Brunner ◽  
M. R. Bakker ◽  
R. G. Björk ◽  
Y. Hirano ◽  
M. Lukac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document