The Modality Specificity of the Slow Negative Wave

1980 ◽  
Vol 17 (3) ◽  
pp. 222-227 ◽  
Author(s):  
Walter Ritter ◽  
Laurence Rotkin ◽  
Herbert G. Vaughan
2021 ◽  
Vol 11 (12) ◽  
pp. 5638
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Hasan Guzel ◽  
Kaan Dal ◽  
Ada Yilmaz ◽  
...  

Dam-break flood waves represent a severe threat to people and properties located in downstream regions. Although dam failure has been among the main subjects investigated in academia, little effort has been made toward investigating wave propagation under the influence of tailwater depth. This work presents three-dimensional (3D) numerical simulations of laboratory experiments of dam-breaks with tailwater performed at the Laboratory of Hydraulics of Iskenderun Technical University, Turkey. The dam-break wave was generated by the instantaneous removal of a sluice gate positioned at the center of a transversal wall forming the reservoir. Specifically, in order to understand the influence of tailwater level on wave propagation, three tests were conducted under the conditions of dry and wet downstream bottom with two different tailwater depths, respectively. The present research analyzes the propagation of the positive and negative wave originated by the dam-break, as well as the wave reflection against the channel’s downstream closed boundary. Digital image processing was used to track water surface patterns, and ultrasonic sensors were positioned at five different locations along the channel in order to obtain water stage hydrographs. Laboratory measurements were compared against the numerical results obtained through FLOW-3D commercial software, solving the 3D Reynolds-Averaged Navier–Stokes (RANS) with the k-ε turbulence model for closure, and Shallow Water Equations (SWEs). The comparison achieved a reasonable agreement with both numerical models, although the RANS showed in general, as expected, a better performance.


2005 ◽  
Vol 14 (2) ◽  
pp. 112-123 ◽  
Author(s):  
Anthony T. Cacace ◽  
Dennis J. McFarland

Purpose: This article argues for the use of modality specificity as a unifying framework by which to conceptualize and diagnose central auditory processing disorder (CAPD). The intent is to generate dialogue and critical discussion in this area of study. Method: Research in the cognitive, behavioral, and neural sciences that relates to the concept of modality specificity was reviewed and synthesized. Results: Modality specificity has a long history as an organizing construct within a diverse collection of mainstream scientific disciplines. The principle of modality specificity was contrasted with the unimodal inclusive framework, which holds that auditory tests alone are sufficient to make the CAPD diagnosis. Evidence from a large body of data demonstrated that the unimodal framework was unable to delineate modality-specific processes from more generalized dysfunction; it lacked discriminant validity and resulted in an incomplete assessment. Consequently, any hypothetical model resulting from incomplete assessments or potential therapies that are based on indeterminate diagnoses are themselves questionable, and caution should be used in their application. Conclusions: Improving specificity of diagnosis is an imperative core issue to the area of CAPD. Without specificity, the concept has little explanatory power. Because of serious flaws in concept and design, the unimodal inclusive framework should be abandoned in favor of a more valid approach that uses modality specificity.


1978 ◽  
Vol 48 (6) ◽  
pp. 980-984 ◽  
Author(s):  
Koki Shimoji ◽  
Hiroyuki Shimizu ◽  
Yoichi Maruyama

✓ Somatosensory evoked response from the cervical skin surface over the spine (the cervical SER) was recorded, and compared with the cord dorsum potential (CDP) simultaneously recorded from the posterior epidural space at the same segment. The cervical SER evoked by segmental nerve stimulation consisted of an initially positive spike (P1), the peak latency being the same as that of the P1 of the CDP, followed by a smaller negative wave with two peaks. The latency of the second peak of the negative wave (N1) coincided with that of the N1 of the CDP. Subsequent to this negative wave, a slow positive wave (P2) with peak latency similar to that of the P2 of the CDP, could be noticed in some subjects. The cervical SER could not be evoked even by strong stimulation of the cauda equina. Thus, the cervical SER might reflect a segmental phenomenon rather than the conducted potential along the cord, and originate from the spinal root and cord in the same way as the segmentally evoked CDP.


1991 ◽  
Vol 78 (2) ◽  
pp. 116-123 ◽  
Author(s):  
Takumi Emori ◽  
Thoru Yamada ◽  
Yojiro Seki ◽  
Akihiro Yasuhara ◽  
Kazumasa Ando ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun

Abstract. In January 2020, unexpected easterly winds developed in the downward-propagating westerly quasi-biennial oscillation (QBO) phase. This event corresponds to the second QBO disruption in history, and it occurred four years after the first disruption that occurred in 2015/16. According to several previous studies, strong midlatitude Rossby waves propagating from the Southern Hemisphere (SH) during the SH winter likely initiated the disruption; nevertheless, the wave forcing that finally led to the disruption has not been investigated. In this study, we examine the role of equatorial waves and small-scale convective gravity waves (CGWs) in the 2019/20 QBO disruption using MERRA-2 global reanalysis data. In June–September 2019, unusually strong Rossby wave forcing originating from the SH decelerated the westerly QBO at 0°–5° N at ~50 hPa. In October–November 2019, vertically (horizontally) propagating Rossby waves and mixed Rossby–gravity (MRG) waves began to increase (decrease). From December 2019, contribution of the MRG wave forcing to the zonal wind deceleration was the largest, followed by the Rossby wave forcing originating from the Northern Hemisphere and the equatorial troposphere. In January 2020, CGWs provided 11 % of the total negative wave forcing at ~43 hPa. Inertia–gravity (IG) waves exhibited a moderate contribution to the negative forcing throughout. Although the zonal-mean precipitation was not significantly larger than the climatology, convectively coupled equatorial wave activities were increased during the 2019/20 disruption. As in the 2015/16 QBO disruption, the increased barotropic instability at the QBO edges generated more MRG waves at 70–90 hPa, and westerly anomalies in the upper troposphere allowed more westward IG waves and CGWs to propagate to the stratosphere. Combining the 2015/16 and 2019/20 disruption cases, Rossby waves and MRG waves can be considered the key factors inducing QBO disruption.


1997 ◽  
Vol 78 (6) ◽  
pp. 2834-2847 ◽  
Author(s):  
Daniel C. Kadunce ◽  
J. William Vaughan ◽  
Mark T. Wallace ◽  
Gyorgy Benedek ◽  
Barry E. Stein

Kadunce, Daniel C., J. William Vaughan, Mark T. Wallace, Gyorgy Benedek, and Barry E. Stein. Mechanisms of within- and cross-modality suppression in the superior colliculus. J. Neurophysiol. 78: 2834–2847, 1997. The present studies were initiated to explore the basis for the response suppression that occurs in cat superior colliculus (SC) neurons when two spatially disparate stimuli are presented simultaneously or in close temporal proximity to one another. Of specific interest was examining the possibility that suppressive regions border the receptive fields (RFs) of unimodal and multisensory SC neurons and, when activated, degrade the neuron's responses to excitatory stimuli. Both within- and cross-modality effects were examined. An example of the former is when a response to a visual stimulus within its RF is suppressed by a second visual stimulus outside the RF. An example of the latter is when the response to a visual stimulus within the visual RF is suppressed when a stimulus from a different modality (e.g., auditory) is presented outside its (i.e., auditory) RF. Suppressive regions were found bordering visual, auditory, and somatosensory RFs. Despite significant modality-specific differences in the incidence and effectiveness of these regions, they were generally quite potent regardless of the modality. In the vast majority (85%) of cases, responses to the excitatory stimulus were degraded by ≥50% by simultaneously stimulating the suppressive region. Contrary to expectations and previous speculations, the effects of activating these suppressive regions often were quite specific. Thus powerful within-modality suppression could be demonstrated in many multisensory neurons in which cross-modality suppression could not be generated. However, the converse was not true. If an extra-RF stimulus inhibited center responses to stimuli of a different modality, it also would suppress center responses to stimuli of its own modality. Thus when cross-modality suppression was demonstrated, it was always accompanied by within-modality suppression. These observations suggest that separate mechanisms underlie within- and cross-modality suppression in the SC. Because some modality-specific tectopetal structures contain neurons with suppressive regions bordering their RFs, the within-modality suppression observed in the SC simply may reflect interactions taking place at the level of one input channel. However, the presence of modality-specific suppression at the level of one input channel would have no effect on the excitation initiated via another input channel. Given the modality-specificity of tectopetal inputs, it appears that cross-modality interactions require the convergence of two or more modality-specific inputs onto the same SC neuron and that the expression of these interactions depends on the internal circuitry of the SC. This allows a cross-modality suppressive signal to be nonspecific and to degrade any and all of the neuron's excitatory inputs.


Sign in / Sign up

Export Citation Format

Share Document